Open hour: senin - sabtu 09:00:00 - 20:00:00; minggu & tanggal merah tutup
Background : Clinical outcome of alveolar ridge augmentation with individualized CAD-CAM-produced titanium mesh [1]

Background : Clinical outcome of alveolar ridge augmentation with individualized CAD-CAM-produced titanium mesh [1]

author: K Sagheb, E Schiegnitz, M Moergel, C Walter, B Al-Nawas, W Wagner | publisher: drg. Andreas Tjandra, Sp. Perio, FISID

Dental implant placement is an effective treatment method for the replacement of lost teeth with high survival rates after long-term follow-up [1,2,3]. However, the long-term success and stability of implants in function are directly correlated with the quality and quantity of the available bone at the prospective implant site [4, 5]. Despite the development of various techniques and augmentation materials, the reestablishment of an adequate amount of bone especially in the vertical direction remains challenging. Many different augmentation procedures, depending on location and size of the defect, were described and have been studied extensively in human and animal studies by evaluating healing events via histological, radiological, and clinical outcomes [6].

The use of conventional titanium meshes (TM) was first described for the reconstruction of osseous-maxillo-facial defects and secondarily introduced for osseous restoration of deficient edentulous maxillary ridges [7,8,9]. In addition, they were used for localized alveolar ridge augmentation of ridge defects with simultaneous and secondary implant insertion [10,11,12]. Further clinical studies showed predictable results for both lateral and vertical bone reconstruction with this titanium mesh technique [13]. These conventional TM are designed as planar plates. Therefore, intraoperative manual shaping and bending of the premade TM according to the individual defect is necessary, which is manually challenging and time-consuming [14, 15]. Furthermore, the corners and edges of these cut and bended meshes possibly provoke damages to the gingiva and mesh exposure. The CAD-CAM technology provides a sufficient solution for these disadvantages. Based on the cone beam computed tomography (CBCT) scan data of the bony defect and a digital work flow system, individualized titanium mesh cages can be created that it can fit perfectly over the bone defect of the augmentation site. However, due to the stiffness of the TM with mechanical irritation to the mucosal flap, the risk of flap dehiscence with exposure of the graft and possible particular or even complete loss of the graft material remains [16, 17].

Serial posts:


id post:
New thoughts
Me:
search
glossary
en in