Discussion : Diagnostic ability of limited volume cone beam computed tomography with small voxel size in identifying the superior and inferior walls of the mandibular canal [4]
Our study had some limitations that should be addressed. First, in our study, antero-posterior location of the mandibular canal was defined by the distance from the mental foramen. Tooth positions could not be used as a reference, because premolars and molars were totally or partially missing in considerable number of the cases. Although areas 1–3 were considered mostly to correspond to the area from the second premolar to second molar, it might not be true for some cases due to anatomical variations for the position of the mental foramen. Second, we did not evaluate the difference of the visibility of the mandibular canal by age or gender. According to the study by Miles et al. [4], the visibility was significantly lower in females than in males. It was also affected by age depending on the location. Although we applied power analysis to determine the sample size, the sample size was not sufficient for such analysis. Third, we could not confirm the actual positions of the mandibular canal walls because we used CBCT images of clinical cases. Thus, it might be possible that a few cases with misinterpretation were included in our data.
Serial posts:
- Abstract : Diagnostic ability of limited volume cone beam computed tomography with small voxel size in identifying the superior and inferior walls of the mandibular canal
- Background : Diagnostic ability of limited volume cone beam computed tomography with small voxel size in identifying the superior and inferior walls of the mandibular canal
- Methods : Diagnostic ability of limited volume cone beam computed tomography with small voxel size in identifying the superior and inferior walls of the mandibular canal [1]
- Methods : Diagnostic ability of limited volume cone beam computed tomography with small voxel size in identifying the superior and inferior walls of the mandibular canal [2]
- Discussion : Diagnostic ability of limited volume cone beam computed tomography with small voxel size in identifying the superior and inferior walls of the mandibular canal [1]
- Discussion : Diagnostic ability of limited volume cone beam computed tomography with small voxel size in identifying the superior and inferior walls of the mandibular canal [2]
- Discussion : Diagnostic ability of limited volume cone beam computed tomography with small voxel size in identifying the superior and inferior walls of the mandibular canal [3]
- Discussion : Diagnostic ability of limited volume cone beam computed tomography with small voxel size in identifying the superior and inferior walls of the mandibular canal [4]
- Conclusions : Diagnostic ability of limited volume cone beam computed tomography with small voxel size in identifying the superior and inferior walls of the mandibular canal
- Abbreviations : Diagnostic ability of limited volume cone beam computed tomography with small voxel size in identifying the superior and inferior walls of the mandibular canal
- References : Diagnostic ability of limited volume cone beam computed tomography with small voxel size in identifying the superior and inferior walls of the mandibular canal [1]
- References : Diagnostic ability of limited volume cone beam computed tomography with small voxel size in identifying the superior and inferior walls of the mandibular canal [2]
- References : Diagnostic ability of limited volume cone beam computed tomography with small voxel size in identifying the superior and inferior walls of the mandibular canal [3]
- Availability of data and materials : Diagnostic ability of limited volume cone beam computed tomography with small voxel size in identifying the superior and inferior walls of the mandibular canal
- Author information : Diagnostic ability of limited volume cone beam computed tomography with small voxel size in identifying the superior and inferior walls of the mandibular canal [1]
- Author information : Diagnostic ability of limited volume cone beam computed tomography with small voxel size in identifying the superior and inferior walls of the mandibular canal [2]
- Ethics declarations : Diagnostic ability of limited volume cone beam computed tomography with small voxel size in identifying the superior and inferior walls of the mandibular canal
- Rights and permissions : Diagnostic ability of limited volume cone beam computed tomography with small voxel size in identifying the superior and inferior walls of the mandibular canal
- About this article : Diagnostic ability of limited volume cone beam computed tomography with small voxel size in identifying the superior and inferior walls of the mandibular canal
- Table 1 κ-values for interobserver agreement : Diagnostic ability of limited volume cone beam computed tomography with small voxel size in identifying the superior and inferior walls of the mandibular canal
- Table 2 Mean visibility ratio ± SD : Diagnostic ability of limited volume cone beam computed tomography with small voxel size in identifying the superior and inferior walls of the mandibular canal
- Table 3 Frequency of cases with visibility ratio of 0.7 or more : Diagnostic ability of limited volume cone beam computed tomography with small voxel size in identifying the superior and inferior walls of the mandibular canal
- Fig. 1. Cross-sectional images in the range of 30 mm just distal to the mental foramen were used for evaluation. The range was divided into three areas, each of which was 10 mm in length, designated as area 1, area 2, and area 3, from anterior to posterior. (The mental foramen was identified on another section and was not visualized on this image) : Diagnostic ability of limited volume cone beam com
- Fig. 2. Visibilities of the superior and inferior walls of the mandibular canal. a Both walls are visible. b Only the inferior wall is visible. c Neither of the walls is visible : Diagnostic ability of limited volume cone beam com
- Fig. 3. Visibility ratios of the superior and inferior walls in three areas. The Friedman test and Scheffe’s test were used for the statistical analysis : Diagnostic ability of limited volume cone beam com
- Fig. 4. Cross-sectional images of areas 1–3 of a 39-year-old female. The visibility ratios for the superior wall in areas 1, 2, and 3 were 0.2, 0.9, and 0.9, respectively, whereas those of the inferior wall were 0.7, 0.9, and 1.0, respectively : Diagnostic ability of limited volume cone beam com