Methods : Comparison of access-hole filling materials for screw retained implant prostheses: 12-month in vivo study [3]
The marginal depth of the access-hole filling at T = 0, T = 1 M, T = 3 M, and T = 6 M could not be defined successfully because of the overfilling phenomenon which disrupted the measurement of marginal gap depth and angle (Fig. 3a–e). Only the marginal depth and angle at T = 12 M could be measured with the same digital microscope, and the mean value for each group was calculated. Each access-hole was divided into four areas including mesio-buccal, disto-buccal, mesio-palatal and disto-palatal surfaces (Fig. 4) to measure the distance of marginal discrepancy at resin/ceramic interface with a 1 μm accuracy (Fig. 5). With this value, a “marginal discrepancy pattern” could be extrapolated for each group (Fig. 7a, b).
For each access hole, an occlusal photograph was taken at the time of T = 0, T = 1 M, T = 3 M, T = 6 M, and T = 12 M, respectively. The marginal integrity was evaluated and recorded at the baseline and 12 months, according to an esthetical scale VAS (visual analogue scale) described by Weininger et al. [11]. Results were recorded by the authors and summarized in Table 2.
Serial posts:
- Methods : Comparison of access-hole filling materials for screw retained implant prostheses: 12-month in vivo study [3]
- Results : Comparison of access-hole filling materials for screw retained implant prostheses: 12-month in vivo study
- Table 1 ᅟ : Comparison of access-hole filling materials for screw retained implant prostheses: 12-month in vivo study
- Table 2 Aesthetical Outcomes at T = 12 M (VAS Score) : Comparison of access-hole filling materials for screw retained implant prostheses: 12-month in vivo study
- Table 4 Disappearance of the overfilling. Unit: % : Comparison of access-hole filling materials for screw retained implant prostheses: 12-month in vivo study
- Fig. 1. Brush-dip technique : Comparison of access-hole filling materials for screw retained implant
- Fig. 2. Occlusal contact point : Comparison of access-hole filling materials for screw retained implant
- Fig. 3. a–e (Filling surface changes): a (ROG, T = 0). b (ROG, T = 1 M). c (ROG, T = 3 M). d (ROG, T = 6 M). e (ROG, T = 12 M) : Comparison of access-hole filling materials for screw retained implant
- Fig. 4. Margin depth measurement localization (example: TRA, T = 12 M) : Comparison of access-hole filling materials for screw retained implant
- Fig. 5. Depth and angle at the margin : Comparison of access-hole filling materials for screw retained implant
- Fig. 6. Access-hole filling surface areas measurement, average : Comparison of access-hole filling materials for screw retained implant
- Fig. 7. a, b (The marginal discrepancy pattern for group CR and M4M). a Group CR (1: Ceramic surface, 2: CR surface) Units of the axis are in μm. b Group M4M (1: Ceramic surface, 2: M4M surface) Units of the axis are in μm : Comparison of access-hole filling materials for screw retained implant