References : Comparison of access-hole filling materials for screw retained implant prostheses: 12-month in vivo study [3]
Taira Y, Sakai M, Sawase T. Effects of primer containing silane and thiophosphate monomers on bonding resin to a leucite-reinforced ceramic. J Dent. 2012;40(5):353–8.
Kato H, Matsumura H, Tanaka T, Atsuta M. Bond strength and durability of porcelain bonding systems. J Prosthet Dent. 1996;75(2):163–8.
Queiroz JR, Souza RO, Nogueira Junior Jr L, Ozcan M, Bottino MA. Influence of acid-etching and ceramic primers on the repair of a glass ceramic. Gen Dent. 2012;60(2):e79–85.
Bottino MA, Snellaert A, Bergoli CD, Özcan M, Bottino MC, Valandro LF. Effect of ceramic etching protocols on resin bond strength to a felspar ceramic. Oper Dent. 2015;40(2):E40–6.
Ozcan M, Allahbeickaraghi A, Dündar M. Possible hazardous effects of hydrofluoric acid and recommendations for treatment approach: a review. Clin Oral Investig. 2012;16(1):15–23.
Magne P, Cascione D. Influence of post-etching cleaning and connecting porcelain on the microtensile bond strength of composite resin to feldspatic porcelain. J Prothet Dent. 2006;96(5):354–61.
Leinfelder KF, Suzuki S. In vitro wear device for determining posterior composite wear. J Am Dent Assoc. 1999;130(9):1347–53.
Sumino N, Tsubota K, Takamizawa T, Shiratsuchi K, Miyazawa M, Latta MA. Comparison of the wear and flexural characteristics of flowable resin composites for posterior lesions. Acta Odontol Scand. 2013;71:820–7.
Ikeda T, Wakabayashi N, Ona M, Ohyama T. Effects of polymerization shrinkage on the interfacial stress at resin-metal joint in denture-base: a non-linear FE stress analysis. Dent Mater. 2006;22:413–9.
Kawai K, Leinfelder KF. Effect of resin composite adhesion on marginal degradation. Dent Mater J. 1995;14(2):211–20.
Naito K. Bonding and wear characteristics of a tri-n-butylborane initiated adhesive resin filled with pre-polymerized composite particles. J Oral Sci. 2011;53(1):109–16.
Wimmer T, Huffmann AM, Eichberger M, Schmidlin PR, Stawarczyk B. Two-body wear rate of PEEK, CAD/CAM resin composite and PMMA: effect of specimen geometries, antagonist materials and test set-up configuration. Dent Mater. 2016;32(6):e127–36.
Kurt M, Ural C, Kulunk T, Sanal AF, Erkoçak A. The effect of screw color and technique to fill access hole on the final color of screw-retained implants crowns. J Oral Implantol. 2011;37(6):673–9.
Serial posts:
- Background : Comparison of access-hole filling materials for screw retained implant prostheses: 12-month in vivo study
- Methods : Comparison of access-hole filling materials for screw retained implant prostheses: 12-month in vivo study [1]
- Methods : Comparison of access-hole filling materials for screw retained implant prostheses: 12-month in vivo study [2]
- Methods : Comparison of access-hole filling materials for screw retained implant prostheses: 12-month in vivo study [3]
- Results : Comparison of access-hole filling materials for screw retained implant prostheses: 12-month in vivo study
- Discussion : Comparison of access-hole filling materials for screw retained implant prostheses: 12-month in vivo study [1]
- Discussion : Comparison of access-hole filling materials for screw retained implant prostheses: 12-month in vivo study [2]
- Discussion : Comparison of access-hole filling materials for screw retained implant prostheses: 12-month in vivo study [3]
- Discussion : Comparison of access-hole filling materials for screw retained implant prostheses: 12-month in vivo study [4]
- Conclusions : Comparison of access-hole filling materials for screw retained implant prostheses: 12-month in vivo study
- References : Comparison of access-hole filling materials for screw retained implant prostheses: 12-month in vivo study [1]
- References : Comparison of access-hole filling materials for screw retained implant prostheses: 12-month in vivo study [2]
- References : Comparison of access-hole filling materials for screw retained implant prostheses: 12-month in vivo study [3]
- References : Comparison of access-hole filling materials for screw retained implant prostheses: 12-month in vivo study [4]
- Acknowledgements : Comparison of access-hole filling materials for screw retained implant prostheses: 12-month in vivo study
- Author information : Comparison of access-hole filling materials for screw retained implant prostheses: 12-month in vivo study
- Rights and permissions : Comparison of access-hole filling materials for screw retained implant prostheses: 12-month in vivo study
- About this article : Comparison of access-hole filling materials for screw retained implant prostheses: 12-month in vivo study
- Table 1 ᅟ : Comparison of access-hole filling materials for screw retained implant prostheses: 12-month in vivo study
- Table 2 Aesthetical Outcomes at T = 12 M (VAS Score) : Comparison of access-hole filling materials for screw retained implant prostheses: 12-month in vivo study
- Table 3 Surface areas changes of access-hole filling. Unit: % : Comparison of access-hole filling materials for screw retained implant prostheses: 12-month in vivo study
- Table 4 Disappearance of the overfilling. Unit: % : Comparison of access-hole filling materials for screw retained implant prostheses: 12-month in vivo study
- Fig. 1. Brush-dip technique : Comparison of access-hole filling materials for screw retained implant
- Fig. 2. Occlusal contact point : Comparison of access-hole filling materials for screw retained implant
- Fig. 3. a–e (Filling surface changes): a (ROG, T = 0). b (ROG, T = 1 M). c (ROG, T = 3 M). d (ROG, T = 6 M). e (ROG, T = 12 M) : Comparison of access-hole filling materials for screw retained implant
- Fig. 4. Margin depth measurement localization (example: TRA, T = 12 M) : Comparison of access-hole filling materials for screw retained implant
- Fig. 5. Depth and angle at the margin : Comparison of access-hole filling materials for screw retained implant
- Fig. 6. Access-hole filling surface areas measurement, average : Comparison of access-hole filling materials for screw retained implant
- Fig. 7. a, b (The marginal discrepancy pattern for group CR and M4M). a Group CR (1: Ceramic surface, 2: CR surface) Units of the axis are in μm. b Group M4M (1: Ceramic surface, 2: M4M surface) Units of the axis are in μm : Comparison of access-hole filling materials for screw retained implant