References : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study [2]
Barbier L, Vander SJ, Krzesinski G, Schepers E, Van der Perre G. Finite element analysis of non-axial versus axial loading of oral implants in the mandible of the dog. J Oral Rehabil. 1998;25(11):847–58.
Saime S, Murat C, Emine Y. The influence of functional forces on the biomechanics of implant-supported prostheses—a review. J Dent. 2002;30:271–82.
Balshi T, Hernandez R, Pryszlak M, Rangert B. A comparative study of one implant versus two replacing a single molar. Int J Oral Maxillofac Implants. 1996;11(3):372–8.
Sullivan D, Siddiqui A. Wide diameter implants: overcoming problems. Dent Today. 1994;13:50–7.
Bahat O, Handelsman M. Use of wide implants and double implants in the posterior jaw: a clinical report. Int J Oral Maxillofac Implants. 1996;11(3):379–86.
Petropoulos V, Wolfinger G, Balshi T. Complications of mandibular molar replacement with a single implant: a case report. J Can Dent Assoc. 2004;70(4):238–42.
Jackson BJ. Small diameter implants: specific indications and considerations for the posterior mandible: a case report. J Oral Implantol. 2011;37 Spec No:156–64.
Misch C. Contemporary implant dentistry. 3rd ed. St. Louis: Elsevier; 2008. p. 264–6.
Von Recum A. Handbook of biomaterials evaluation: scientific, technical and clinical testing of implant materials. 1986.
Shigley J, Mischke C. Mechanical engineering design. 5th ed. New York: McGraw-Hill; 1989. p. 325–70.
Bidez M, Misch C. Issues in bone mechanics related to oral implants. Implant Dent. 1992;1:289–94.
Sevimay M, Turhan F, Kiliçarslan M, Eskitascioglu G. Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. J Prosthet Dent. 2005;93:227–34.
Bidez M, Misch C. Clinical biomechanics in implant dentistry. 2005. p. 310–2. Dental implant prosthetics.
Misch C, Suzuki I, Misch-Dietch D. A positive correlation between occlusion between occlusal trauma and peri-implant bone loss -literature support. implant dent. 2005;14:108–16.
Misch C. Implant design considerations for the posterior regions of the mouth. Implant Dent. 1999;8:376–86.
Serial posts:
- Abstract : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study
- Background : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study [1]
- Background : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study [2]
- Methods : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study [1]
- Methods : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study [2]
- Methods : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study [3]
- Results : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study
- Discussion : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study [1]
- Discussion : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study [2]
- Discussion : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study [3]
- Discussion : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study [4]
- Conclusions : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study
- References : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study [1]
- References : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study [2]
- References : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study [3]
- References : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study [4]
- Author information : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study
- Ethics declarations : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study
- Rights and permissions : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study
- About this article : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study
- Table 1 Descriptive statistics and results of comparison between microstrains induced with different implant design regardless of other variables (collective microstrains) : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study
- Table 2 Descriptive statistics and results of comparison between microstrains induced with different implant designs with each crown material (overall microstrains) : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study
- Table 3 Descriptive statistics and results of comparison between microstrains induced by the two crown materials regardless of other variables (collective microstrains) : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study
- Table 4 Descriptive statistics and results of comparison between microstrains induced by the two load directions regardless of other variables (collective microstrains) : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study
- Table 5 Descriptive statistics and results of comparison between microstrains induced by the two load directions with each implant design and crown material (overall microstrains) : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study
- Fig. 1. a Standard, b short-wide, and c single-piece mini implants : Peri-implant
- Fig. 2. Metal crown supported on two mini implants : Peri-implant
- Fig. 3. Lava Ultimate Restorative crown on the two mini implants. : Peri-implant
- Fig. 4. Installation of strain gauges on surfaces of epoxy resin adjacent to mini implants : Peri-implant
- Fig. 5. Loading of implant axially : Peri-implant
- Fig. 6. Loading of implant off-axially : Peri-implant