References : The use of a biphasic calcium phosphate in a maxillary sinus floor elevation procedure: a clinical, radiological, histological, and histomorphometric evaluation with 9- and 12-month healing times [2]
Beirne JC, Barry HJ, Brady FA, Morris VB. Donor site morbidity of the anterior iliac crest following cancellous bone harvest. Int J Oral Maxillofac Surg. 1996;25:268–71.
Vermeeren JIJF, Wismeijer D, van Waas MAJ. One-step reconstruction of the severely resorbed mandible with onlay bone grafts and endosteal implants: a 5-year follow-up. Int J Oral Maxillofac Surg. 1996;2:112–5.
Nkenke E, Stelzle F. Clinical outcomes of sinus floor augmentation for implant placement using autogenous bone or bone substitutes: a systematic review. Clin Oral Implants Res. 2009;20(Suppl. 4):124–33.
Wheeler SL. Sinus augmentation for dental implants: the use of alloplastic materials. J Oral Maxillofac Surg. 1997;55:1287–93.
Nery EB, Lee KK, Czajkowski S, Dooner JJ, Duggan M, Ellinger RF, Henkin JM, Hines R, Miller M, Olson JW. A veterans administration cooperative study of biphasic calcium phosphate ceramic in periodontal osseous defects. J Periodontol. 1990;61:737–44.
Zerbo IR, Bronckers AL, de Lange G, Burger EH. Localisation of osteogenic and osteoclastic cells in porous beta-tricalcium phosphate particles used for human maxillary sinus floor elevation. Biomaterials. 2005;26:1445–51.
Joosten U, Joist A, Frebel T, Walter M, Langer M. The use of an in situ curing hydroxyapatite cement as an alternative to bone graft following removal of enchondroma of the hand. J Hand Surg Br Eur. 2000;25(3):288–91.
Costantino PD, Friedman CD, Jones K, Chow LC, Pelzer HJ, Sisson GAS. Hydroxyapatite cement: I. Basic chemistry and histologic properties. Arch Otolaryngol Head Neck Surg. 1991;117:397–84.
Costantino PD, Friedman CD. Synthetic bone graft substitutes. Otolaryngolic Clin North Am. 1994;27:1037–74.
Jensen SS, Aaboe M, Pinholt EM, Hjorting-Hansen E, Melsen F, Ruyter IE. Tissue reaction and material characteristics of four bone substitutes. Int J Oral Maxillofac Implants. 1996;11:55–66.
Daculsi G, Laboux O, Malard O. Weiss P. Current state of the art of biphasic calcium phosphate bioceramics. J Mater Sci Mater Med 2003;14: 195–200.
LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med. 2003;14:201–9.
Serial posts:
- Abstract : The use of a biphasic calcium phosphate in a maxillary sinus floor elevation procedure: a clinical, radiological, histological, and histomorphometric evaluation with 9- and 12-month healing times
- Background : The use of a biphasic calcium phosphate in a maxillary sinus floor elevation procedure: a clinical, radiological, histological, and histomorphometric evaluation with 9- and 12-month healing times [1]
- Background : The use of a biphasic calcium phosphate in a maxillary sinus floor elevation procedure: a clinical, radiological, histological, and histomorphometric evaluation with 9- and 12-month healing times [2]
- Methods : The use of a biphasic calcium phosphate in a maxillary sinus floor elevation procedure: a clinical, radiological, histological, and histomorphometric evaluation with 9- and 12-month healing times [1]
- Methods : The use of a biphasic calcium phosphate in a maxillary sinus floor elevation procedure: a clinical, radiological, histological, and histomorphometric evaluation with 9- and 12-month healing times [2]
- Methods : The use of a biphasic calcium phosphate in a maxillary sinus floor elevation procedure: a clinical, radiological, histological, and histomorphometric evaluation with 9- and 12-month healing times [3]
- Methods : The use of a biphasic calcium phosphate in a maxillary sinus floor elevation procedure: a clinical, radiological, histological, and histomorphometric evaluation with 9- and 12-month healing times [4]
- Results : The use of a biphasic calcium phosphate in a maxillary sinus floor elevation procedure: a clinical, radiological, histological, and histomorphometric evaluation with 9- and 12-month healing times [1]
- Results : The use of a biphasic calcium phosphate in a maxillary sinus floor elevation procedure: a clinical, radiological, histological, and histomorphometric evaluation with 9- and 12-month healing times [2]
- Discussion : The use of a biphasic calcium phosphate in a maxillary sinus floor elevation procedure: a clinical, radiological, histological, and histomorphometric evaluation with 9- and 12-month healing times [1]
- Discussion : The use of a biphasic calcium phosphate in a maxillary sinus floor elevation procedure: a clinical, radiological, histological, and histomorphometric evaluation with 9- and 12-month healing times [2]
- Conclusions : The use of a biphasic calcium phosphate in a maxillary sinus floor elevation procedure: a clinical, radiological, histological, and histomorphometric evaluation with 9- and 12-month healing times
- References : The use of a biphasic calcium phosphate in a maxillary sinus floor elevation procedure: a clinical, radiological, histological, and histomorphometric evaluation with 9- and 12-month healing times [1]
- References : The use of a biphasic calcium phosphate in a maxillary sinus floor elevation procedure: a clinical, radiological, histological, and histomorphometric evaluation with 9- and 12-month healing times [2]
- References : The use of a biphasic calcium phosphate in a maxillary sinus floor elevation procedure: a clinical, radiological, histological, and histomorphometric evaluation with 9- and 12-month healing times [3]
- References : The use of a biphasic calcium phosphate in a maxillary sinus floor elevation procedure: a clinical, radiological, histological, and histomorphometric evaluation with 9- and 12-month healing times [4]
- Author information : The use of a biphasic calcium phosphate in a maxillary sinus floor elevation procedure: a clinical, radiological, histological, and histomorphometric evaluation with 9- and 12-month healing times [1]
- Author information : The use of a biphasic calcium phosphate in a maxillary sinus floor elevation procedure: a clinical, radiological, histological, and histomorphometric evaluation with 9- and 12-month healing times [2]
- Ethics declarations : The use of a biphasic calcium phosphate in a maxillary sinus floor elevation procedure: a clinical, radiological, histological, and histomorphometric evaluation with 9- and 12-month healing times
- Rights and permissions : The use of a biphasic calcium phosphate in a maxillary sinus floor elevation procedure: a clinical, radiological, histological, and histomorphometric evaluation with 9- and 12-month healing times
- About this article : The use of a biphasic calcium phosphate in a maxillary sinus floor elevation procedure: a clinical, radiological, histological, and histomorphometric evaluation with 9- and 12-month healing times
- Table 1 Alveolar tissue height measurements on panoramic radiographs (in true mm) in the 9-month group : The use of a biphasic calcium phosphate in a maxillary sinus floor elevation procedure: a clinical, radiological, histological, and histomorphometric evaluation with 9- and 12-month healing times
- Table 2 Radiological results (alveolar tissue height measurements in true mm) in the 12-month group : The use of a biphasic calcium phosphate in a maxillary sinus floor elevation procedure: a clinical, radiological, histological, and histomorphometric evaluation with 9- and 12-month healing times
- Table 3 Histomorphometric evaluation of the biopsies after a 9-month healing time : The use of a biphasic calcium phosphate in a maxillary sinus floor elevation procedure: a clinical, radiological, histological, and histomorphometric evaluation with 9- and 12-month healing times
- Table 4 Histomorphometric evaluation of the biopsies after a 12-month healing time : The use of a biphasic calcium phosphate in a maxillary sinus floor elevation procedure: a clinical, radiological, histological, and histomorphometric evaluation with 9- and 12-month healing times
- Fig. 1. Images of patient # 5 (9-month healing time). a. Radiograph of the left maxillary sinus: situation 9 months after the maxillary sinus floor elevation procedure. b. With a trephine drill, the implant osteotomy is made and the biopsy is obtained. c. Clinical situation after placing two Straumann® SLA implants in the left posterior maxilla. d. Radiograph of two Straumann® SLA implants in the left posterior maxilla : The use of a biphasic calcium phosphate in a maxil
- Fig. 2. Aveolar tissue height (in true mm) over a 5-year period in the 9-month group : The use of a biphasic calcium phosphate in a maxil
- Fig. 3. Alveolar tissue height (in true mm) over a 5-year period in the 12-month group : The use of a biphasic calcium phosphate in a maxil
- Fig. 4. Patient # 1 (12-month healing time): overview of a typical example of a bone biopsy stained with Goldner trichrome staining (magnification ×10) : The use of a biphasic calcium phosphate in a maxil
- Fig. 5. Patient # 4 (9-month healing time): increased bone formation following the shape of the grafted particles stained with Goldner trichrome staining (magnification ×100) : The use of a biphasic calcium phosphate in a maxil
- Fig. 6. Patient # 1 (12-month healing time): increased bone formation following the shape of the grafted particles that are still present (magnification ×100) : The use of a biphasic calcium phosphate in a maxil