Table 1 Qualitative evaluation by SEM analysis of micro- and macrothread areas of rough surface implants : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
Table 1 Qualitative evaluation by SEM analysis of micro- and macrothread areas of rough surface implants : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and
author: Motohiro Otsuki, Masahiro Wada, Masaya Yamaguchi, Shigetada Kawabata, Yoshinobu Maeda, Kazunori Ikebe | publisher: drg. Andreas Tjandra, Sp. Perio, FISID
Rough surface (microthread) | No effect | Fair | Good | Excellent |
G | + | |||
US | + | |||
Air | + | |||
Rot | + | |||
Las | + | |||
Rough surface (macrothread) | No effect | Fair | Good | Excellent |
G | + | |||
US | + | |||
Air | + | |||
Rot | + | |||
Las | + |
Table 1 Qualitative evaluation by SEM analysis of micro- and macrothread areas of rough surface implants
Serial posts:
- Table 1 Qualitative evaluation by SEM analysis of micro- and macrothread areas of rough surface implants : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and
- Table 2 Qualitative evaluation by SEM analysis of micro- and macrothread areas of machined surface implants : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and
- Table 3 Quantitative analysis of CFU counts (× 105) from rough and machined surface implants after cleansing by each method : Evaluation of decontamination methods of oral biofilms formed on
- Fig. 1. Hard resin splint model carrying 6 implants : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implant
- Fig. 2. GC Aadva® implant; 3.3-mm diameter, 8-mm length : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implant
- Fig. 3. Decontamination methods. a Gauze soaked in saline applied using a sawing motion. b Ultrasonic scaler (SUPRASSON P-MAX, Satelec-Acteon group, Bordeaux, France, power setting: P5, tip: Implant Protect IP3L/R). c Air abrasives (AIR-FLOW MASTER PIEZON®, EMS, Nyon, Switzerland, power setting: water flow 100%, air pressure 75%, powder: AIR-FLOW® PERIO POWDER, nozzle: PERIO-FLOW® nozzles, distance from the nozzle to the implant 2 mm). d Rotary stainless steel instrument (iBrush, NeoBiotech©, Los Angeles, USA, rotating speed 1500 rpm). e Er:YAG laser (Erwin AdvErL, J.Morita©, Kyoto, Japan, power setting 60 mJ/pulse, 10 pps, tip: C600F, distance from the tip to the implant 2 mm) : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implant
- Fig. 4. SEM analysis of 4 areas. 1 Rough surface—microthread area. 2 Rough surface—macrothread area. 3 Machined surface—microthread area. 4 Machined surface—macrothread area : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implant
- Fig. 5. Quantitative analysis of CFU counts on rough and machined surface implants after cleansing by each method. Asterisk represents vs Cont; a, vs G; b, vs US; c, vs Air; d, vs Rot; e, vs Las which indicates p < 0.05 : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implant
- Fig. 6. Comparison of cleansability of each decontamination method on the different implant surfaces. Asterisk indicates p < 0.05 : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implant