Background : Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation [1]
The use of materials that come into direct contact with human tissues such as the bone requires maximum biological security. These materials remain for a long period of time or even indefinitely in the human body, and no negative reactions, like toxicity or carcinogenic effects, shall be acceptable.
For this reason, biocompatibility of new materials has been widely studied, and only after a lot of testing, they can become ready for use in biomedical areas. Titanium is one of these materials, and it is used for implant applications due to its favorable weight-to-strength ratio and good biological performance in the bone, which is intimately dependent on surface properties such as surface roughness, surface chemistry, and wettability [1]. Such features of titanium have led researchers from many different fields to seek alternative materials. As a result, in recent years, a lot of progress has paved the way to creating innovative biomaterials in order to better existing treatments and develop new ones for improved quality of life of patients [2]. One of these materials that may either replace titanium dental implants or constitute an alternative as a new dental implant material is tantalum. This metal was first used for dental implants in 1962. However, problems with costs, metallurgical processes, and poor design have left this material in the background. Today, because of its biocompatible properties and biomechanical qualities associated with new production processes, newly obtained sources, and new dental implant designs, a growing interest in its use in implant dentistry has developed [3].
At the same time, the crucial search for the best biocompatible metal surface has led to the development of surface treatments that aim to create an ideal topography for cell proliferation, protein adhesion, and better mineral salt deposition [4–6] on titanium dental implants. In order to achieve this purpose, a large number of methods have been used over the last decade to change dental implant surface texture, including grit blasting, acid etching, and anodization [7]. One of these processes is plasma electrolytic oxidation (PEO), also known as micro-arc oxidation (MAO) or anodic spark deposition (ASD). This process was slightly modified in 2000 when the TiUnite™ dental implant surface was introduced. The results were very satisfactory [8, 9], and now, TiUnite™ is the major surface treatment applied on titanium dental implant patterns.
Serial posts:
- Abstract : Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation
- Background : Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation [1]
- Background : Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation [2]
- Methods : Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation [1]
- Methods : Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation [2]
- Results : Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation [1]
- Results : Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation [2]
- Discussion and conclusions : Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation [1]
- Discussion and conclusions : Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation [2]
- References : Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation [1]
- References : Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation [2]
- Author information : Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation
- Additional information : Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation
- Rights and permissions : Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation
- About this article : Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation
- Table 1 Distribution of groups : Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation
- Table 2 Chemical analysis of surface (group 1 spectrum 1) : Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation
- Table 3 Chemical analysis of surface (group 1 spectrum 2) : Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation
- Table 4 Chemical analysis of surface (group 2 spectrum 1) : Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation
- Table 5 Chemical analysis of surface (group 2 spectrum 2) : Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation
- Table 6 Chemical analysis of surface (group 3 spectrum 1) : Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation
- Table 7 Chemical analysis of surface (group 3 spectrum 2) : Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation
- Table 8 Chemical analysis of surface (group 4 spectrum 1) : Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation
- Table 9 Chemical analysis of surface (group 4 spectrum 2) : Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation
- Fig. 1. Group control : Achieving surface chemical and morphologic alterat
- Fig. 2. Group 2—1 min : Achieving surface chemical and morphologic alterat
- Fig. 3. Group 3—3 min : Achieving surface chemical and morphologic alterat
- Fig. 4. Group 4—5 min : Achieving surface chemical and morphologic alterat
- Fig. 5. EDS control : Achieving surface chemical and morphologic alterat
- Fig. 6. EDS 1 min : Achieving surface chemical and morphologic alterat
- Fig. 7. EDS 3 min : Achieving surface chemical and morphologic alterat
- Fig. 8. EDS 5 min : Achieving surface chemical and morphologic alterat