Background : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency [2]
The computed ISQ value is based on the following calculation formulae:
Hereby, f denotes the measured maximum resonance frequency (RF). Coefficients a, b, c, d, and e are property information of Osstell (Osstell AB, Gothenburg, Sweden). The coefficients were provided for internal use under the agreement of no publication. From clinical reports [10,11,12,13,14,15,16] listed in Table 1, it can be concluded that ISQ values for one specific implant system, inserted in comparable jawbone regions, differ considerably between outcomes obtained by the original wired Osstell device and the more recent Osstell Mentor device. These findings were confirmed in both a clinical trial with an approximate difference of 9 ISQ units [16] and in vitro on human cadaver jawbone with an approximate difference of 10 ISQ units [17]. This means that the comparison of clinical studies reporting implant stability outcomes generated by different versions of Osstell devices in (systematic) reviews needs caution and correction.
The purpose of this in vitro study was to develop a laboratory method, intended for future research of aspects of implant-Smartpeg complex stiffness and its possible influence on the overall RFA-based implant stability determination. For this, a combination of laser Doppler vibrometry for measurement and signal processing by aid of fast Fourier transformation analysis was used. Laser Doppler vibrometry technology permits to determine both the resonance frequency and deflection behavior of a mounted Smartpeg. The latter can be of interest since different implant types possess different prosthetic connections that suit different types of Smartpegs. In vitro research enables to control and simulate in a standardized way the stiffness of the surrounding bone and the stiffness of the implant-bone complex by imbedding implants in self-curing resin. Complete imbedding of the implant to the most coronal level simulates a normal clinical situation of total osseointegration. Incomplete imbedding allows to both measure the deflection mode of the Smartpeg and the implant itself when different vertical points are used to execute the measurement (Fig. 1).
Serial posts:
- Abstract : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency
- Background : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency [1]
- Background : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency [2]
- Background : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency [3]
- Methods : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency [1]
- Methods : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency [2]
- Methods : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency [3]
- Results : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency
- Discussion : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency
- Conclusions : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency
- References : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency [1]
- References : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency [2]
- Author information : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency [1]
- Author information : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency [2]
- Ethics declarations : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency
- Rights and permissions : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency
- About this article : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency
- Table 1 Published secondary implant stability values for Straumann tissue level RN SLA surfaced implants (Ø = 4.1 mm) : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency
- Table 2 Mean values (± SD) of recorded maximum RF values, calculated indirect ISQ values, and direct recorded ISQ values for Ankylos (A) and Straumann (S) test implants : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency
- Fig. 1. Concept for study of deflection and stiffness aspects of implant-Smartpeg complex by laser Doppler vibrometry. Intentional partial imbedding of implants allows to detect both the deflection of implant and Smartpeg separately at different vertical levels by changing the position of the laser beam : ISQ calculation evaluation of in vitro laser scann
- Fig. 2. Clamped Osstell probe orientated towards a Smartpeg mounted on a test implant. Note the red laser beam dot on the flat surface of the Smartpeg hexagon part : ISQ calculation evaluation of in vitro laser scann
- Fig. 3. Example of a typical autospectrum pointing to a 1 maximum RF based on 1000 measurements in case of a Straumann test implant : ISQ calculation evaluation of in vitro laser scann
- Fig. 4. Scatterplot depicting indirect calculated and direct measured ISQ values of the tested implants : ISQ calculation evaluation of in vitro laser scann