Conclusion : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials
Conclusion : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials
author: Haruka Araki, Tamaki Nakano, Shinji Ono, Hirofumi Yatani | publisher: drg. Andreas Tjandra, Sp. Perio, FISID
Within the limitations of this study, the following conclusions were drawn.
The stress distribution in the cortical bone and implant body was smaller in the TL implant than in the BL implant.
The TiZr alloy had a lower elastic modulus than cpTi, and the stress distribution generated in the cortical bone and implant body was also lower.
The stress distribution generated in the cortical bone and the implant body increased as the length of the implant body decreased, but the design of the implant body had a greater influence than the implant body length.
Serial posts:
- Abstract : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials
- Summary : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials
- Materials and methods : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials [1]
- Materials and methods : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials [2]
- Results : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials
- Discussion : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials [1]
- Discussion : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials [2]
- Discussion : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials [3]
- Conclusion : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials
- Availability of data and materials : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials
- References : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials [1]
- References : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials [2]
- References : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials [3]
- References : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials [4]
- References : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials [5]
- Acknowledgements : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials
- Funding : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials
- Author information : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials
- Ethics declarations : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials
- Additional information : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials
- Rights and permissions : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials
- About this article : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials
- Table 1 Mechanical properties of each model component : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials
- Fig. 1. Three-dimensional CAD model. (upper: a abutment screw, b superstructure, c implant body; Lower: bone model) : Three-dimensional finite element analysis of extra short implant
- Fig. 2. Models of different implant body lengths : Three-dimensional finite element analysis of extra short implant
- Fig. 3. Assembly of implant and bone models. A static load of 100 N was applied obliquely from the buccal side to the occlusal plane of the superstructure at 30 to the long axis of the implant : Three-dimensional finite element analysis of extra short implant
- Fig. 4. Distribution of the maximum principle stress in the surrounding bone (right: buccal side, left: lingual side) : Three-dimensional finite element analysis of extra short implant
- Fig. 5. Distribution of the maximum principle stress in the surrounding bone (occlusal view) : Three-dimensional finite element analysis of extra short implant
- Fig. 6. Largest maximum principle stress value in cortical bone (MPa) : Three-dimensional finite element analysis of extra short implant
- Fig. 7. Von Mises stress distribution in implant bodies. (right: buccal side, left: lingual side) : Three-dimensional finite element analysis of extra short implant
- Fig. 8. Maximum von Mises stress value in implant bodies (MPa) : Three-dimensional finite element analysis of extra short implant