References : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials [2]
Lee TJ, Ueno T, Nomura N, Wakabayashi N, Hanawa T. Titanium-zirconium binary alloy as dental implant material: analysis of the influence of compositional change on mechanical properties and in vitro biologic response. Int J Oral Maxillofac Implants. 2015;31:547–54.
Al-Nawas B, Brägger U, Meijer HJA, Naert I, Persson R, Perucchi A. A double-blind randomized controlled trial (RCT) of titanium-13zirconium versus titanium grade IV small-diameter bone level implants in edentulous mandibles–results from a 1-year observation period. Clin Implant Dent Relat Res. 2012;14:896–904.
Altuna P, Lucas-Taulé E, Gargallo-Albiol J, Figueras-Álvarez O, Hernández-Alfaro F, Nart J. Clinical evidence on titanium–zirconium dental implants: a systematic review and meta-analysis. Int J Oral Maxillofac Surg. 2016;45:842–50.
Barter S, Stone P, Brägger U. A pilot study to evaluate the success and survival rate of titanium–zirconium implants in partially edentulous patients: results after 24 months of follow-up. Clin Oral Implants Res. 2012;23:873–81.
Bulaqi HA, Mashhadi MM, Safari H, Samandari MM, Geramipanah F. Effect of increased crown height on stress distribution in short dental implant components and their surrounding bone: a finite element analysis. J Prosthet Dent. 2015;113:548–57.
Cresswell EN, Goff MG, Nguyen TM, Lee WX, Hernandez CJ. Spatial relationships between bone formation and mechanical stress within cancellous bone. J Biomech. 2016;49:222–8.
Marcian P, Borak L, Valasek J, Kaiser J, Florian Z, Wolff J. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone – a feasibility study. J Biomech. 2014;47:3830–6.
Bayraktar M, Gultekin BA, Yalcin S, Mijiritsky E. Effect of crown to implant ratio and implant dimensions on periimplant stress of splinted implant-supported crowns: a finite element analysis. Implant Dent. 2013;22:406–13.
Rismanchian M, Askari N, Shafiei S. The effect of placement depth of platform-switched implants on periimplant cortical bone stress: a 3-dimensional finite element analysis. Implant Dent. 2013;22:165–9.
Madfa AA, Kadir A, Kashani J, Saidin S, Sulaiman E, Marhazlinda J, et al. Stress distributions in maxillary central incisors restored with various types of post materials and designs. Med Eng Phys. 2014;36:962–7.
Serial posts:
- Abstract : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials
- Summary : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials
- Materials and methods : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials [1]
- Materials and methods : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials [2]
- Results : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials
- Discussion : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials [1]
- Discussion : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials [2]
- Discussion : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials [3]
- Conclusion : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials
- Availability of data and materials : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials
- References : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials [1]
- References : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials [2]
- References : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials [3]
- References : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials [4]
- References : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials [5]
- Acknowledgements : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials
- Funding : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials
- Author information : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials
- Ethics declarations : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials
- Additional information : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials
- Rights and permissions : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials
- About this article : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials
- Table 1 Mechanical properties of each model component : Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials
- Fig. 1. Three-dimensional CAD model. (upper: a abutment screw, b superstructure, c implant body; Lower: bone model) : Three-dimensional finite element analysis of extra short implant
- Fig. 2. Models of different implant body lengths : Three-dimensional finite element analysis of extra short implant
- Fig. 3. Assembly of implant and bone models. A static load of 100 N was applied obliquely from the buccal side to the occlusal plane of the superstructure at 30 to the long axis of the implant : Three-dimensional finite element analysis of extra short implant
- Fig. 4. Distribution of the maximum principle stress in the surrounding bone (right: buccal side, left: lingual side) : Three-dimensional finite element analysis of extra short implant
- Fig. 5. Distribution of the maximum principle stress in the surrounding bone (occlusal view) : Three-dimensional finite element analysis of extra short implant
- Fig. 6. Largest maximum principle stress value in cortical bone (MPa) : Three-dimensional finite element analysis of extra short implant
- Fig. 7. Von Mises stress distribution in implant bodies. (right: buccal side, left: lingual side) : Three-dimensional finite element analysis of extra short implant
- Fig. 8. Maximum von Mises stress value in implant bodies (MPa) : Three-dimensional finite element analysis of extra short implant