Open hour: senin - sabtu 09:00:00 - 20:00:00; minggu & tanggal merah tutup
Methods : Evaluation of effectiveness of concentrated growth factor on osseointegration [1]

Methods : Evaluation of effectiveness of concentrated growth factor on osseointegration [1]

author: Cagasan Pirpir, Onur Yilmaz, Celal Candirli, Emre Balaban | publisher: drg. Andreas Tjandra, Sp. Perio, FISID

This study was conducted in compliance with the principles of the Declaration of Helsinki, and approval of the ethics committee required for the study was obtained from the Ethics Committee of the Karadeniz Technical University (2015/21). The procedures to be performed were explained in detail and patients signed the consent forms. The study was carried out on individuals who applied to Karadeniz Technical University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery to get dental implants for upper jaw tooth deficiencies. In terms of standardization, only patients with implants applied to maxillary anterior and premolar region were included in the study. Cylindrical implants were used in each patient. The diameter of the implant was 3.5 or 4.0 mm, and the length was 10 mm. In patients who underwent tooth extraction, implants were placed 6 months after extraction. Patients rehabilitated with a fixed prosthesis, such as a single crown or bridge, were included in the study. Patients included in the study were randomly assigned to two groups: study and control groups.

Exclusion criteria were identified as:

Presence of systemic diseases preventing implantation

Having blood disease to prevent centrifugation

Previous implantation or augmentation of the same region

The need for additional bone augmentation procedures (such as maxillary sinus augmentation, distraction osteogenesis)

Allergy to one of the materials to be used during operation

Pregnancy

Smoking

The implanted regions were evaluated preoperatively with panoramic radiography and computed tomography (CT) images. In the study group, the socket walls were laid with CGF membrane while the implant surfaces were washed with the thrombocyte-deprived part of the tube. No different procedure was done to the implants and socket in the control group.

A standard, disposable, 10-ml non-anticoagulant tube and a matching centrifuge device (MEDIFUGE, Silfradentsrl, S. Sofia, Italy) were used. Intravenous blood samples from the patients were placed in centrifuge tubes without anticoagulants and accelerated for 30 s, centrifuged at 2700 rpm for 4 min, 2400 rpm for 4 min, 2700 rpm for 4 min, and 3000 rpm for 3 min, and decelerated for 36 s to stop. All of these acceleration and deceleration processes are adjusted automatically due to the centrifugal device’s feature. Three layers were observed in the tube: red blood cell layer at the bottom, platelet-deprived plasma layer (without cell) at the top, and fibrin gel with concentrated growth factor and platelet aggregation in the middle. First, the uppermost platelet-deprived fraction was removed with a sterile syringe. The layer in the form of a membrane containing the concentrated growth membrane was held with the aid of a hemostatic clamp, separated from the red blood cell layer by cutting with a pair of scissors and then pressed to form a membrane (Fig. 1).


id post:
New thoughts
Me:
search
glossary
en in