Methods : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency [2]
The Smartpeg excitation mode was exactly performed as described above. Notation of the maximum resonance frequency for indirect measurements is followed by notation of direct ISQ value on the display of Osstell IDx device. Positioning of the probe was not changed during indirect and direct recordings for a given test implant.
Each resin block contained five identical implants with attached Smartpegs of a given implant type with a specific diameter and length configuration. Correct positioning of the Osstell probe towards the Smartpeg magnet part was confirmed by the auditory signal generated by the Osstell device. Correct positioning of the vibrometer laser beam was checked by the visual reflection indicator on the vibrometer display.
The output signal of the laser Doppler vibrometer was linked through an ADC/frontend interface (3160-A-4/2 (Bruëll & Kjaër, Nærum, Denmark) to a laptop with signal processing software (Bruëll & Kjaër Pulse Labshop, Bruëll & Kjaër Nærum, Denmark) to convert the speed of resonance v(t) into a resonance frequency v(f) using the autospectrum function.
The software enabled to analyze the continuously monitored input signal from the laser vibrometer. The measurement period was set at 31.25 ms. The time signal v(t) was processed through a fast Fourier transformation (“FFT”) analysis V(f), resulting in a frequency span ranging between 0 and 12.58 kHz with 400 frequency intervals, resulting in a frequency resolution of 32 Hz. The FFT analysis generates a so-called autospectrum, based on the following formulae:
with V ∗(f) being the complex conjugate of V(f).
The final generated autospectrum pointed the maximum resonance frequency value based on an average of 1000 measurements per detection session (Fig. 3). This recorded maximum resonance vibration frequency was noted in the datafile. The measurement was done in fivefold, and a mean value of all five measurements was computed, serving as the value to be input in the Osstell algorithm. Secondly, the “direct” ISQ value generated by the Osstell device was also noted in the datafile. After completion of measurements for each out of the five implants in each resin blocks, measurements were repeated in fourfold. In total, five measurements were made for each test implant.
Serial posts:
- Abstract : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency
- Background : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency [1]
- Background : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency [2]
- Background : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency [3]
- Methods : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency [1]
- Methods : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency [2]
- Methods : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency [3]
- Results : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency
- Discussion : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency
- Conclusions : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency
- References : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency [1]
- References : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency [2]
- Author information : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency [1]
- Author information : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency [2]
- Ethics declarations : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency
- Rights and permissions : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency
- About this article : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency
- Table 1 Published secondary implant stability values for Straumann tissue level RN SLA surfaced implants (Ø = 4.1 mm) : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency
- Table 2 Mean values (± SD) of recorded maximum RF values, calculated indirect ISQ values, and direct recorded ISQ values for Ankylos (A) and Straumann (S) test implants : ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency
- Fig. 1. Concept for study of deflection and stiffness aspects of implant-Smartpeg complex by laser Doppler vibrometry. Intentional partial imbedding of implants allows to detect both the deflection of implant and Smartpeg separately at different vertical levels by changing the position of the laser beam : ISQ calculation evaluation of in vitro laser scann
- Fig. 2. Clamped Osstell probe orientated towards a Smartpeg mounted on a test implant. Note the red laser beam dot on the flat surface of the Smartpeg hexagon part : ISQ calculation evaluation of in vitro laser scann
- Fig. 3. Example of a typical autospectrum pointing to a 1 maximum RF based on 1000 measurements in case of a Straumann test implant : ISQ calculation evaluation of in vitro laser scann
- Fig. 4. Scatterplot depicting indirect calculated and direct measured ISQ values of the tested implants : ISQ calculation evaluation of in vitro laser scann