References : RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling [1]
Bertin TJC, Thivichon-Prince B, LeBlanc ARH, Caldwell MW, Viriot L. Current perspectives on tooth implantation, attachment, and replacement in amniota. Front Physiol. 2018;9:1630.
Schminke B, Vom Orde F, Gruber R, Schliephake H, Burgers R, Miosge N. The pathology of bone tissue during peri-implantitis. J Dent Res. 2015;94(2):354–61.
Mombelli A, Muller N, Cionca N. The epidemiology of peri-implantitis. Clin Oral Implants Res. 2012;23(Suppl 6):67–76.
Colombo APV, Tanner ACR. The role of bacterial biofilms in dental caries and periodontal and peri-implant diseases: a historical perspective. J Dent Res. 2019;98(4):373–85.
Yu X, Hu Y, Freire M, Yu P, Kawai T, Han X. Role of toll-like receptor 2 in inflammation and alveolar bone loss in experimental peri-implantitis versus periodontitis. J Periodontal Res. 2017.
Tzach-Nahman R, Mizraji G, Shapira L, Nussbaum G, Wilensky A. Oral infection with Porphyromonas gingivalis induces peri-implantitis in a murine model: evaluation of bone loss and the local inflammatory response. J Clin Periodontol. 2017;44(7):739–48.
Nguyen Vo TN, Hao J, Chou J, et al. Ligature induced peri-implantitis: tissue destruction and inflammatory progression in a murine model. Clin Oral Implants Res. 2017;28(2):129–36.
Carcuac O, Berglundh T. Composition of human peri-implantitis and periodontitis lesions. J Dent Res. 2014;93(11):1083–8.
Weitzmann MN. The role of inflammatory cytokines, the RANKL/OPG axis, and the immunoskeletal interface in physiological bone turnover and osteoporosis. Scientifica (Cairo). 2013;2013:125705.
Sano T, Akeda K, Yamada J, Takegami N, Sudo T, Sudo A. Expression of the RANK/RANKL/OPG system in the human intervertebral disc: implication for the pathogenesis of intervertebral disc degeneration. BMC Musculoskelet Disord. 2019;20(1):225.
Chen Y, Yang K, Zhou Z, Wang L, Du Y, Wang X. Mechanical stress modulates the RANKL/OPG system of periodontal ligament stem cells via alpha7 nAChR in human deciduous teeth: an in vitro study. Stem Cells Int. 2019;2019:5326341.
Amin N, Boccardi V, Taghizadeh M, Jafarnejad S. Probiotics and bone disorders: the role of RANKL/RANK/OPG pathway. Aging Clin Exp Res. 2019.
Serial posts:
- Abstract : RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling [1]
- Abstract : RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling [2]
- Background : RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling [1]
- Background : RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling [2]
- Methods : RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling [1]
- Methods : RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling [2]
- Methods : RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling [3]
- Results : RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling [1]
- Results : RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling [2]
- Discussion : RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling [1]
- Discussion : RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling [2]
- Conclusions : RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling
- Availability of data and materials : RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling
- Abbreviations : RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling
- References : RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling [1]
- References : RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling [2]
- References : RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling [3]
- References : RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling [4]
- Acknowledgements : RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling
- Funding : RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling
- Author information : RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling [1]
- Author information : RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling [2]
- Ethics declarations : RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling
- Additional information : RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling
- Supplementary information : RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling
- Rights and permissions : RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling
- About this article : RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling
- Table 1 Success rate (SR) of osseointegrated implants 4 weeks after implant placement : RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through
- Fig. 1. Mouse model of ligature-induced experimental peri-implantitis. (a) Tooth extraction: left maxillary first and second molars extracted at 4 weeks old and the tooth extraction socket healed well with smooth gingiva surface after 6 weeks post-extraction. Implant placement: implant was put in alveolar bone without flap elevation. Ligature placement: at 4 weeks post-implant, 7-0 ligatures were applied under the fixture head. Gingival injection: injections for animals were administered three times on days 3, 6, and 9 during 14 days ligation period. Sample collection: 14 days post-ligation, the gingival tissues and the skulls were collected. (b) Images depicting processing steps of the experimental design (scale bar, 500 μm) : RANKL blockade alleviates peri-implant
- Fig. 2. Anti-RANKL and anti-RANKL+miR-146a treatments decreased ligature-induced bone resorption with different patterns in experimental peri-implantitis of WT and TLR2/4 KO mice. Buccal side images of the defleshed skulls were taken of the control (non-ligation) group, ligation (non-treatment) group, ligation with anti-RANKL antibody (ligation+AR) treatment group, and ligation with anti-RANKL antibody + miR-146a (ligation+A+MiR) treatment group in WT mice and TLR2/4 KO mice (a) (scale bar, 500 μm). The bone resorption area based on these images was measured and analyzed for WT mice (b) and TLR2/4 KO mice (c) (mean ± SD, n = 6, *p < 0.05, **p < 0.01, SEM, standard error of difference between two means). Three dimension (3D) images from μCT were collected and analyzed for WT mice (d) and TLR4 KO mice (e) (mean ± SD, n = 6, *p < 0.05, **p < 0.01) : RANKL blockade alleviates peri-implant
- Fig. 3. Anti-RANKL and anti-RANKL+miR-146a treatments decreased TRAP-positive cell quantities with different patterns in experimental peri-implantitis of WT and TLR2/4 KO mice. TRAP-positive cells (red color) with 3 or more nuclei were considered osteoclasts and were shown in the control group, ligation group, ligation with anti-RANKL antibody treatment group, and ligation with anti-RANKL antibody + miR-146a treatment group in WT mice and TLR2/4 KO mice (a) (Im, implant; Av, alveolar bone; scale bar, 100 μm). The quantities of TRAP-positive cells were analyzed in each group of WT mice (b) and TLR2/4 KO mice (c) (mean ± SD, n = 6, **p < 0.01) : RANKL blockade alleviates peri-implant
- Fig. 4. Anti-RANKL and anti-RANKL+miR-146a treatments decreased the inflammatory cell infiltration of the implant gingival tissues with different patterns in experimental peri-implantitis of WT and TLR2/4 KO mice. HE staining of the gingival tissue around implants were performed in the control group, ligation group, ligation with anti-RANKL antibody treatment group, and ligation with anti-RANKL antibody + miR-146a treatment group in WT mice and TLR2/4 KO mice (a) (scale bar, 100 μm). Inflammatory cell numbers were measured and analyzed in each group of WT mice (b) and TLR2/4 KO mice (c) (mean ± SD, n = 6, **p < 0.01) : RANKL blockade alleviates peri-implant
- Fig. 5. Anti-RANKL and anti-RANKL+miR-146a treatments decreased gingival mRNA expression of TNF-α and RANKL with different patterns in experimental peri-implantitis of WT and TLR2/4 KO mice. Gingival tissues around ligatured implants and non-ligation implants were excised and processed for RT-qPCR analysis to determine mRNA level of TNF-α of WT mice (a) and TLR2/4 KO mice (b) (mean ± SD, n = 6, *p < 0.05, **p < 0.01) and mRNA level of RANKL of WT mice (c) and TLR2/4 KO mice (d) (mean ± SD, n = 6, *p < 0.05, **p < 0.01). : RANKL blockade alleviates peri-implant