Abstract: Porous collagen-hydroxyapatite scaffolds ...
Abstract
Current bone grafting materials have significant limitations for repairing maxillofacial and dentoalveolar bone deficiencies. An ideal bone tissue-engineering construct is still lacking. The purpose of the present study was first to synthesize and develop a collagen-hydroxyapatite (Col-HA) composite through controlled in situ mineralization on type I collagen fibrils with nanometer-sized apatite crystals, and then evaluate their biologic properties by culturing with mouse and human mesenchymal stem cells (MSCs). We synthesized Col-HA scaffolds with different Col:HA ratios. Mouse C3H10T1/2 MSCs and human periodontal ligament stem cells (hPDSCs) were cultured with scaffolds for cell proliferation and biocompatibility assays. We found that the porous Col-HA composites have good biocompatibility and biomimetic properties. The Col-HA composites with ratios 80:20 and 50:50 composites supported the attachments and proliferations of mouse MSCs and hPDSCs. These findings indicate that Col-HA composite complexes have strong potentials for bone tissue regeneration.
Serial posts:
- Porous collagen-hydroxyapatite scaffolds with mesenchymal stem cells for bone regeneration
- Abstract: Porous collagen-hydroxyapatite scaffolds ...
- Introduction: Porous collagen-hydroxyapatite scaffolds ...
- Materials & methods: Porous collagen-hydroxyapatite scaffolds ...
- Results: Porous collagen-hydroxyapatite scaffolds ...
- Discussion: Porous collagen-hydroxyapatite scaffolds ...
- Conclusions: Porous collagen-hydroxyapatite scaffolds ...