Background : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study [1]
The molars are one of the first teeth to be lost over lifetime; thus, their replacement is frequently needed. Implantation is generally the preferred choice to replace a missing single tooth avoiding vital teeth preparation and bridge fabrication [1].
The mandibular bone loss occurs as knife-edge residual ridge where there is marked narrowing of the labiolingual diameter of the crest of the ridge with a compensatory internal remodeling which sometimes leads to a sharp crest of the ridge which proceeds to low, well-rounded residual ridge [2]. Because of this type of bone loss and the presence of important anatomical areas, the planning of atrophic arches’ posterior sites is normally more complex [3]. The possibilities for patient’s rehabilitation in such limiting situations have involved advanced surgical techniques, such as autogenous bone augmentation and inferior alveolar nerve repositioning. However, these augmentation procedures have some drawbacks such as prolonged time until tooth reconstruction, patient morbidity, and expense. Side effects of bone augmentation include profound edema, pain, and discomfort and possible risks of nerve and blood vessel injury leading to nerve disturbance and hematoma [3, 4].
The use of short implants offer, in relation to the regenerative techniques, several advantages: low cost and treatment length, simplicity, and less risk of complications. An implant is considered to be short if it has a length that is equal to or less than 10 mm [5].
In the last few years, root form implants ranging from 1.8 to slightly more than 2 mm have promoted for long-term use, a task for which the device was approved by the Food and Drug Administration [6].
In situations where there is an inadequate interdental space, reduced interocclusal space, convergent adjacent tooth roots or close proximity of adjacent tooth roots or narrow atrophic osseous contour, mini implants may be appropriate. Nevertheless, when using new available narrow-diameter implants to replace a single molar, two implants could be used even when the distance between the adjacent teeth is smaller [7]. Mini dental implants are minimally invasive since it allows conservative placement of implants in bone without bone grafting and significant trauma and expense for patient and they can be used in patients who would normally be considered high risk (e.g., patients on anticoagulant or steroid therapy). In addition the general dentist can master this technique with minimal training and surgical experience, significantly expanding his armamentarium [6].
Serial posts:
- Abstract : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study
- Background : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study [1]
- Background : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study [2]
- Methods : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study [1]
- Methods : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study [2]
- Methods : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study [3]
- Results : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study
- Discussion : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study [1]
- Discussion : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study [2]
- Discussion : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study [3]
- Discussion : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study [4]
- Conclusions : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study
- References : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study [1]
- References : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study [2]
- References : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study [3]
- References : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study [4]
- Author information : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study
- Ethics declarations : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study
- Rights and permissions : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study
- About this article : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study
- Table 1 Descriptive statistics and results of comparison between microstrains induced with different implant design regardless of other variables (collective microstrains) : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study
- Table 2 Descriptive statistics and results of comparison between microstrains induced with different implant designs with each crown material (overall microstrains) : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study
- Table 3 Descriptive statistics and results of comparison between microstrains induced by the two crown materials regardless of other variables (collective microstrains) : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study
- Table 4 Descriptive statistics and results of comparison between microstrains induced by the two load directions regardless of other variables (collective microstrains) : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study
- Table 5 Descriptive statistics and results of comparison between microstrains induced by the two load directions with each implant design and crown material (overall microstrains) : Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study
- Fig. 1. a Standard, b short-wide, and c single-piece mini implants : Peri-implant
- Fig. 2. Metal crown supported on two mini implants : Peri-implant
- Fig. 3. Lava Ultimate Restorative crown on the two mini implants. : Peri-implant
- Fig. 4. Installation of strain gauges on surfaces of epoxy resin adjacent to mini implants : Peri-implant
- Fig. 5. Loading of implant axially : Peri-implant
- Fig. 6. Loading of implant off-axially : Peri-implant