Open hour: senin - sabtu 09:00:00 - 20:00:00; minggu & tanggal merah tutup
... fatigue microdamage resulting in resorption of the bone may be the product of mechanical stress above this threshold.

Discussion : Occlusal overload with dental implants: a review

author: Steven J Sadowsky | publisher: drg. Andreas Tjandra, Sp. Perio, FISID

Discussion

Treatment planning implant-prosthetic rehabilitation should be dependent on a biomechanical algorithm customized for each patient. Given the lack of a definitive load-bearing analysis for bone supporting implants, an empirical or intuitive dogma, based on a tooth model, has proliferated in the clinical amphitheater. This has led to a penchant for invasive and costly procedures rather than more minimally invasive approaches. While short implants (even with high crown to implant ratios) can successfully override augmentation procedures, and implant cantilevers can dependably reduce surgical exposure as well as soft tissue problems, and splinting may not be necessary to maintain the marginal bone level; biases against short implants, implant cantilevers, and non-splinted units are replete and are not evidence-based. Despite this so-called safe approach to implant treatment planning, peri-implantitis is on the rise. Understanding the role that mechanical stress and strain play in peri-implant bone loss may change the tooth model as a guide for implant prosthetic designs and assist in explaining why peri-implantitis has been so prevalent.

This study is limited by the non-systematic nature of its review. However, there are no randomized or prospective human trials on occlusal overload due to the ethical concerns in such methodologies. The way forward will be in designing and conducting overload conditions in preclinical experiments and using finite element analyses to identify thresholds of bone microstrain for assessing safe implant/prosthetic designs for our patients.

Summary

When the best available evidence is lacking in directing clinicians in their treatment planning decisions with implant restorations, a basic science approach can offer clarity. The relationship between mechanical loading and biologic consequences on bone response has been established, but specific thresholds have not been correlated to prosthetic design and occlusal scheme guidelines. The high ceiling of implant survival has clouded the importance of dissecting why some implants fail. It has been sobering, however, to note that as high as 20% of all implant patients experience peri-implantitis, while the impact of occlusal overload remains unknown.

Serial posts:


id post:
New thoughts
Me:
search
glossary
en in