Discussion
Treatment planning implant-prosthetic rehabilitation should be dependent on a biomechanical algorithm customized for each patient. Given the lack of a definitive load-bearing analysis for bone supporting implants, an empirical or intuitive dogma, based on a tooth model, has proliferated in the clinical amphitheater. This has led to a penchant for invasive and costly procedures ra...
With implants, the load is transferred directly from the implant to surrounding bone through the ankylosed root analog and adverse effects have not been found to be as pronounced during non-axial loading. However, there are thresholds of non-axial forces that have been shown to cause crestal bone loss around implants. Duyck et al. have shown that a transverse force of 14.7 N applied on a distan...
This has been explained by Frost. He has identified osteocytes as an important part of the cellular machinery of bone functional adaptation. When the strain stimulus surpasses the homeostatic regulatory mechanism threshold, but is below the bone fatigue failure, tissue level strains lead to fluid flow-mediated osteocyte and dendrite perturbation and release of anabolic factors. In turn, osteoblast...
Another reason is that without a periodontal ligament, implant occlusal loads are directly transferred to the bone leading to higher forces to the supporting structure surrounding implants and risk for bony microfracture (peri-implantitis), compared to natural teeth.
In order to measure bite forces, the most widely accepted recording device is the strain gauge bite force transduce...
Another reason is that without a periodontal ligament, implant occlusal loads are directly transferred to the bone leading to higher forces to the supporting structure surrounding implants and risk for bony microfracture (peri-implantitis), compared to natural teeth.
In order to measure bite forces, the most widely accepted recording device is the strain gauge bite force transduce...
Another reason is that without a periodontal ligament, implant occlusal loads are directly transferred to the bone leading to higher forces to the supporting structure surrounding implants and risk for bony microfracture (peri-implantitis), compared to natural teeth.
In order to measure bite forces, the most widely accepted recording device is the strain gauge bite force transduce...
Of note, statistical mediating factors are implant length, diameter, and surface as well as bone quantity D vs. A (Bone quantity relates to the bone volume present. Division A is the height of the bone more than 10 mm. Division B is more than 10 mm in height, but the width at the crest is 2.5–5 mm. Division C is less than 10 mm in height and width atrophied to less than 2...
Similar findings were reported by Kozlovsky et al., who performed a split-mouth design on Beagle dogs, placing prosthetic abutments on implants, either in supra-occlusion or infraocclusion. They found no loss of osseointegration or marginal bone loss with non-inflamed, occlusally overloaded prostheses on dental implants. In fact, the authors demonstrated, in the absence of in...
On the other hand, fatigue microdamage resulting in resorption of the bone may be the product of mechanical stress above this threshold. If this gradient could be defined for implant restorations, it would clarify a topic in implant dentistry that has been fueled more by dogma, expert opinion, and inferences from concepts used for natural teeth. The purpose of this study is to revi...
Abstract
Controversy persists as to the role of occlusal overload in peri-implantitis. Animal studies have not revealed the biological threshold for fatigue failure in the peri-implant bone. On the other hand, clinical studies have demonstrated a link between parafunction and implant failure, although variables such as intensity and frequency of loads, as well as bone density, have led to d...