Open hour: senin - sabtu 09:00:00 - 20:00:00; minggu & tanggal merah tutup
Bioengineering, Biomechanics, Dental implant materials, Implant healing, Cell biology, Osteoblast, Stress analysis

Fig. 2. Side view of a computerized simulation, showing the flow chambers’ lower compartment and the flow profile in between the two plates; shearing gap and bottom plate are shown on the left side; rotation speed = 200 rpm; colour code bar (left edge) showing shear force values [Pa] [1 Pa = 10 dyn/cm2]; flow direction presented by arrows : Cellular fluid shear stress on implant

author: P W Kmmerer, D G E Thiem, A Alshihri, G H Wittstock, R Bader, B Al-Nawas, M O Klein | publisher: drg. Andreas Tjandra, Sp. Perio, FISID
undefinedn, showing the flow chambers’ lower compartment and the flow profile in between the two plates; shearing gap and bottom plate are shown on the left side; rotation speed = 200 rpm; colour code bar (left edge) showing shear force values [Pa] [1 Pa = 10 dyn/cm2]; flow direction presented by arrows
e in between the two plates; shearing gap and bottom plate are shown on the left side; rotation speed = 200 rpm; colour code bar (left edge) showing shear force values [Pa] [1 Pa = 10 dyn/cm2]; flow direction presented by arrows

Fig. 2. Side view of a computerized simulation, showing the flow chambers’ lower compartment and the flow profile in between the two plates; shearing gap and bottom plate are shown on the left side; rotation speed = 200 rpm; colour code bar (left edge) showing shear force values [Pa] [1 Pa = 10 dyn/cm2]; flow direction presented by arrows

Serial posts:


id post:
New thoughts
Me:
search
glossary
en in