Open hour: senin - sabtu 09:00:00 - 20:00:00; minggu & tanggal merah tutup
Introduction : Twist removal of healed vs. nonhealed implants—a mechanical and histological study in mini pigs [1]

Introduction : Twist removal of healed vs. nonhealed implants—a mechanical and histological study in mini pigs [1]

author: Ricardo de Oliveira Silva, Fabrcio Passador, Paulo Henrique Ferreira Caria | publisher: drg. Andreas Tjandra, Sp. Perio, FISID

Since the discovery of osseointegration by Branemark in Sweden in 1960, where found that when titanium screws left undisturbed in bone, the osteocytes grow in close apposition to the titanium surfaces and provide firm anchorage. This discovery was successfully applied in dental and craniofacial reconstructive surgery in 1965 [1, 2]. Dental implants became a common procedure in the modern dental treatment with long-term success rates exceeding 90% reaching up to 100% [3, 4] due to the development of some implant systems [5]. However, the increased use of dental implants also improved the fails. The main causes of failure are incorrect position, fracture, peri-implantitis, chronic diseases, and smoking [6–9].

Several studies indicated that screw loosening appeared to be one of the most common complications in dental implants once osseointegration has occurred, especially in single-tooth implant restorations [8, 10, 11]. The incorrect position of implants can cause maxillary sinus membrane damage, pressure on the dental nerves, or difficulties in prosthetic procedure as well as inconvenient esthetical problems. Esthetical requirements of patients have increased, especially for anterior teeth [12, 13]. Even after successful osseointegration, the implant remotion may be necessary [1, 12, 14, 15].

To correct the wrong position or fractured implant is necessary to remove it. For this purpose, it may be used various surgical techniques such as the use of trephine, implant drills, ultrasound, and others. But the use of these techniques cause great loss of peri-implant bone, what limits or prevents a new immediate rehabilitation [16, 17]. Alternatives to removal implants without losing or expanding alveolar bone led Anitua and Orive [18] to use the counter torque. Studies comparing counter torque with trephine drills to remove implants indicated better performance for the first [18, 19].

The causes of implant failure are well known and described; however, what happened with the peri-implant bone that can influence on the success of a reimplantation needs to be better described, with the increase of implant removals to replacement for functional or aesthetic corrections and the need to reduce alveolar bone loss [20].

Serial posts:


id post:
New thoughts
Me:
search
glossary
en in