Methods : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [3]
Ten specimens of each material group tested were investigated. As control references, we used the fluorescence values of pure phosphate-buffered saline (0-control), buffer and CytoX-Violet (dye-control), and pure bacterial solution (bacteria-control).
All calculations and graphic displays were done with SPSS 16.0 for Windows (SPSS Corporation, Chicago, IL, USA). Means and standard deviations for R a , water contact angles, and relative fluorescence intensities were calculated. We used three-way analysis of variance (ANOVA) to analyze the influence of R a and hydrophobicity on the adherence of S. sanguinis and S. epidermidis to the titanium and ceramic specimens. The Tukey–Kramer multiple comparison test was applied for post hoc analysis, and the level of significance was set at α = 0.05.
Serial posts:
- Abstract : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants
- Background : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [1]
- Background : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [2]
- Methods : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [1]
- Methods : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [2]
- Methods : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [3]
- Results : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [1]
- Results : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [2]
- Discussion : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [1]
- Discussion : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [2]
- Discussion : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [3]
- Discussion : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [4]
- Discussion : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [5]
- Conclusions : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants
- References : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [2]
- References : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [3]
- References : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [4]
- References : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [5]
- Acknowledgements : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants
- Author information : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants
- Ethics declarations : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants
- Rights and permissions : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants
- About this article : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants
- Table 1 Arithmetic average of surface roughness Ra (means and standard deviations [μm]) and wettability (means and standard deviations [°]) of the ten tested material : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants
- Fig. 1. AFM images for 30 μm × 30 μm (a–d) and 3 μm × 3 μm scan areas (e–h) of rough ceramic (a, e), smooth ceramic (b, f), rough titanium (c, g), and smooth titanium (d, h) : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implant
- Fig. 2. Comparison of AFM surface profiles of rough ceramic (CeROUGH), smooth ceramic (CeSMOOTH), rough titanium (TiROUGH), and smooth titanium (TiSMOOTH); scan sizes are 30 μm in a and 1 μm in b : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implant
- Fig. 3. Relative fluorescence intensities (rfi) of S. epidermidis (a) and S. sanguinis (b) on titanium and ceramic implant surfaces with different grades of roughness (means and standard deviations) : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implant
- Fig. 4. Relative fluorescence intensities (rfi) of S. epidermidis (a) and S. sanguinis (b) on titanium and ceramic implant surfaces with different grades of roughness and hydrophobicity (means and standard deviations) : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implant