References : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [4]
Quirynen M, De Soete M, van Steenberghe D. Infectious risks for oral implants: a review of the literature. Clin Oral Implants Res. 2002;13:1–19.
Weerkamp AH, Uyen HM, Busscher HJ. Effect of zeta potential and surface energy on bacterial adhesion to uncoated and saliva-coated human enamel and dentin. J Dent Res. 1988;67:1483–7.
Barbour ME, O’Sullivan DJ, Jenkinson HF, Jagger DC. The effects of polishing methods on surface morphology, roughness and bacterial colonisation of titanium abutments. J Mater Sci Mater Med. 2007;18:1439–47.
Taylor RL, Verran J, Lees GC, Ward AJ. The influence of substratum topography on bacterial adhesion to polymethyl methacrylate. J Mater Sci Mater Med. 1998;9:17–22.
Quirynen M, Van der Mei HC, Bollen CM, Van den Bossche LH, Doornbusch GI, van Steenberghe D, et al. The influence of surface-free energy on supra- and subgingival plaque microbiology. An in vivo study on implants. J Periodontol. 1994;65:162–7.
Subramani K, Jung RE, Molenberg A, Hammerle CH. Biofilm on dental implants: a review of the literature. Int J Oral Maxillofac Implants. 2009;24:616–26.
Grivet M, Morrier JJ, Benay G, Barsotti O. Effect of hydrophobicity on in vitro streptococcal adhesion to dental alloys. J Mater Sci Mater Med. 2000;11:637–42.
Bürgers R, Schneider-Brachert W, Rosentritt M, Handel G, Hahnel S. Candida albicans adhesion to composite resin materials. Clin Oral Investig. 2009;13:293–9.
Nassar U, Meyer AE, Ogle RE, Baier RE. The effect of restorative and prosthetic materials on dental plaque. Periodontol. 2000;1995:8,114–124.
Mabboux F, Ponsonnet L, Morrier JJ, Jaffrezic N, Barsotti O. Surface free energy and bacterial retention to saliva-coated dental implant materials—an in vitro study. Colloids Surf B Biointerfaces. 2004;25:199–205.
Weerkamp AH, van der Mei HC, Busscher HJ. The surface free energy of oral streptococci after being coated with saliva and its relation to adhesion in the mouth. J Dent Res. 1985;64:1204–10.
Verran J, Taylor RL, Lees GC. Bacterial adhesion to inert thermoplastic surfaces. J Mater Sci Mater Med. 1996;7:597.
Serial posts:
- Abstract : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants
- Background : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [1]
- Background : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [2]
- Methods : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [1]
- Methods : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [2]
- Methods : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [3]
- Results : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [1]
- Results : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [2]
- Discussion : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [1]
- Discussion : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [2]
- Discussion : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [3]
- Discussion : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [4]
- Discussion : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [5]
- Conclusions : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants
- References : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [2]
- References : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [3]
- References : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [4]
- References : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [5]
- Acknowledgements : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants
- Author information : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants
- Ethics declarations : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants
- Rights and permissions : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants
- About this article : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants
- Table 1 Arithmetic average of surface roughness Ra (means and standard deviations [μm]) and wettability (means and standard deviations [°]) of the ten tested material : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants
- Fig. 1. AFM images for 30 μm × 30 μm (a–d) and 3 μm × 3 μm scan areas (e–h) of rough ceramic (a, e), smooth ceramic (b, f), rough titanium (c, g), and smooth titanium (d, h) : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implant
- Fig. 2. Comparison of AFM surface profiles of rough ceramic (CeROUGH), smooth ceramic (CeSMOOTH), rough titanium (TiROUGH), and smooth titanium (TiSMOOTH); scan sizes are 30 μm in a and 1 μm in b : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implant
- Fig. 3. Relative fluorescence intensities (rfi) of S. epidermidis (a) and S. sanguinis (b) on titanium and ceramic implant surfaces with different grades of roughness (means and standard deviations) : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implant
- Fig. 4. Relative fluorescence intensities (rfi) of S. epidermidis (a) and S. sanguinis (b) on titanium and ceramic implant surfaces with different grades of roughness and hydrophobicity (means and standard deviations) : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implant