References : Significance of mandibular molar replacement with a dental implant: a theoretical study with nonlinear finite element analysis [3]
Kim Y, Oh TJ, Misch CE, Wang HL. Occlusal considerations in implant therapy: clinical guidelines with biomechanical rationale. Clin Oral Implants Res. 2005;16:26–35.
Korioth TW, Hannam AG. Deformation of the human mandible during simulated tooth clenching. J Dent Res. 1994;73:56–66.
van Zyl PP, Grundling NL, Jooste CH, Terblanche E. Three-dimensional finite element model of a human mandible incorporating six osseointegrated implants for stress analysis of mandibular cantilever prostheses. Int J Oral Maxillofac Implants. 1995;10:51–7.
Kunavisarut C, Lang LA, Stoner BR, Felton DA. Finite element analysis on dental implant-supported prostheses without passive fit. J Prosthodont. 2002;11:30–40.
Kobayashi K, Yorimoto T, Hikita K, Maida T. Abutment forms and restorative materials in adhesive prosthesis: a finite element analysis. Dent Mater J. 2004;23:75–80.
Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. Influence of marginal bone resorption on stress around an implant––a three-dimensional finite element analysis. J Oral Rehabil. 2005;32:279–86.
Martinez JB, Oloyede VO, Broom ND. Biomechanics of load-bearing of the intervertebral disc: an experimental and finite element model. Med Eng Phys. 1997;19:145–56.
Kumagai H, Suzuki T, Hamada T, Sondang P, Fujitani M, Nikawa H. Occlusal force distribution on the dental arch during various levels of clenching. J Oral Rehabil. 1999;26:932–5.
Iplikcioglu H, Akca K, Cehreli MC, Sahin S. Comparison of non-linear finite element stress analysis with in vitro strain gauge measurements on Morse taper implant. Int J Oral Maxillofac Implants. 2003;18:258–65.
Eser A, Akca K, Eckert S, Cehreli MC. Nonlinear finite element analysis versus ex vivo strain gauge measurement on immediately loaded implants. Int J Oral Maxillofac Implants. 2009;24:439–46.
Tanaka E, van Eijden T. Biomechanical behavior of the temporomandibular joint disc. Crit Rev Oral Biol Med. 2003;14:138–50.
Singh M, Detamore MS. Biomechanical properties of the mandibular condylar cartilage and their relevance to the TMJ disc. J Biomech. 2009;42:405–17.
Hansson T, Nordstrom B. Thickness of the soft tissue layers and articular disk in temporomandibular joints with deviations in form. Acta Odontol Scand. 1977;35:281–8.
Serial posts:
- Abstract : Significance of mandibular molar replacement with a dental implant: a theoretical study with nonlinear finite element analysis
- Background : Significance of mandibular molar replacement with a dental implant: a theoretical study with nonlinear finite element analysis [1]
- Background : Significance of mandibular molar replacement with a dental implant: a theoretical study with nonlinear finite element analysis [2]
- Methods : Significance of mandibular molar replacement with a dental implant: a theoretical study with nonlinear finite element analysis [1]
- Methods : Significance of mandibular molar replacement with a dental implant: a theoretical study with nonlinear finite element analysis [2]
- Methods : Significance of mandibular molar replacement with a dental implant: a theoretical study with nonlinear finite element analysis [3]
- Results : Significance of mandibular molar replacement with a dental implant: a theoretical study with nonlinear finite element analysis [1]
- Results : Significance of mandibular molar replacement with a dental implant: a theoretical study with nonlinear finite element analysis [2]
- Results : Significance of mandibular molar replacement with a dental implant: a theoretical study with nonlinear finite element analysis [3]
- Discussion : Significance of mandibular molar replacement with a dental implant: a theoretical study with nonlinear finite element analysis [1]
- Discussion : Significance of mandibular molar replacement with a dental implant: a theoretical study with nonlinear finite element analysis [2]
- Discussion : Significance of mandibular molar replacement with a dental implant: a theoretical study with nonlinear finite element analysis [3]
- Conclusions : Significance of mandibular molar replacement with a dental implant: a theoretical study with nonlinear finite element analysis
- References : Significance of mandibular molar replacement with a dental implant: a theoretical study with nonlinear finite element analysis [1]
- References : Significance of mandibular molar replacement with a dental implant: a theoretical study with nonlinear finite element analysis [2]
- References : Significance of mandibular molar replacement with a dental implant: a theoretical study with nonlinear finite element analysis [3]
- References : Significance of mandibular molar replacement with a dental implant: a theoretical study with nonlinear finite element analysis [4]
- Author information : Significance of mandibular molar replacement with a dental implant: a theoretical study with nonlinear finite element analysis
- Ethics declarations : Significance of mandibular molar replacement with a dental implant: a theoretical study with nonlinear finite element analysis
- Rights and permissions : Significance of mandibular molar replacement with a dental implant: a theoretical study with nonlinear finite element analysis
- About this article : Significance of mandibular molar replacement with a dental implant: a theoretical study with nonlinear finite element analysis
- Table 1 Material properties : Significance of mandibular molar replacement with a dental implant: a theoretical study with nonlinear finite element analysis
- Fig. 1. Three-dimensional finite element model. The tooth roots and implant bodies are displayed with permeability. a Im67, b Im6, c Im4567, d Im456, e MT67, and f MT7 : Significance of mandibular molar replacement with a dental implant
- Fig. 2. Load displacement curves of springs : Significance of mandibular molar replacement with a dental implant
- Fig. 3. Load displacement curves of natural teeth in FE model : Significance of mandibular molar replacement with a dental implant
- Fig. 4. Three-dimensional finite element model with natural teeth and no defect : Significance of mandibular molar replacement with a dental implant
- Fig. 5. Distribution of occlusal force in the natural teeth model displayed in Fig.4 : Significance of mandibular molar replacement with a dental implant
- Fig. 6. Springs for opposing teeth and TMJs and load directions. Arrows indicate loads, arrowheads indicate restricted nods, and spiral lines indicate springs : Significance of mandibular molar replacement with a dental implant
- Fig. 7. Initializing models altering the load displacement curves of springs : Significance of mandibular molar replacement with a dental implant
- Fig. 8. Distribution of occlusal force in models. a Im67, b Im6, c Im4567, d Im456, e MT67, and f MT7. R right TMJ, L left TMJ, 4 first premolar, 5 second premolar, 6 first molar, and 7 second molar. Numbers within circles indicate implant superstructure : Significance of mandibular molar replacement with a dental implant