Results : Effect of bite force in occlusal adjustment of dental implants (1)
Results
Displaceability of teeth
The load-displacement curve of the left canine under vertical load indicated two-phase displacement as shown in Fig. 7.
Model-T
The results of model-T are shown in Fig. 8. Adj40N resulted in the concentration of approximately 25 % of the occlusal force at the most posteriorly located implant on each side. In other words, about half of the total occlusal force occurred at these implants under Load100N, Load200N, Load400N, and Load800N. At the premolar site implants, 6.9 and 4.8 % of the occlusal force was distributed under Load100N and Load200N, respectively. However, under Load400N and Load800N, occlusal force scarcely occurred there. The percentage of the total occlusal force (hereinafter abbreviated as POF) borne by the TMJ was smaller than that in model-N under all loading conditions.
Adj200N resulted in a smaller POF than in model-N at the implants in molar sites under Load40N and Load100N, which were conditions with less load than that exerted during occlusal adjustment. On the other hand, under these conditions, the occlusal force was larger than in model-N at the most anteriorly located implant. The POF in the TMJ was slightly larger than in model-N. Under Load400N, when the load was larger than that exerted during occlusal adjustment, 35.9 % of the occlusal force was concentrated at the molar site implants. Under Load800N, when the load was larger than that exerted during occlusal adjustment, 37.7 % of the occlusal force was concentrated at the molar site implants. In contrast, little or no occlusal force occurred at the premolar site implants. The POF in the TMJ was 12.1 % under Load400N and 11.7 % under Load800N.
Adj400N resulted in the reduction of POF at the molar site implants to half of the POF in model-N under Load40N and Load100N. On the other hand, 19.1 and 17.9 % of the occlusal force was distributed at the premolar site implants under Load40N and Load100N, respectively. The POF in the TMJ was 16.1 and 17.0 % under Load40N and Load100N, respectively.
Serial posts:
- Effect of bite force in occlusal adjustment of dental implants
- Background : Effect of bite force in occlusal adjustment of dental implants
- Methods : Effect of bite force in occlusal adjustment of dental implants (1)
- Methods : Effect of bite force in occlusal adjustment of dental implants (2)
- Methods : Effect of bite force in occlusal adjustment of dental implants (3)
- Results : Effect of bite force in occlusal adjustment of dental implants (1)
- Results : Effect of bite force in occlusal adjustment of dental implants (2)
- Discussion : Effect of bite force in occlusal adjustment of dental implants (3)
- Discussion : Effect of bite force in occlusal adjustment of dental implants (3)
- Discussion : Effect of bite force in occlusal adjustment of dental implants (4)
- Table 1 Material properties
- Table 2 Size of each gap
- Figure 1. Finite element models (model-I and model-T)
- Figure 2. Boundary conditions to verify the displaceability of teeth
- Figure 3. Load-displacement curves of the springs
- Figure 4. Occlusal adjustment was simulated by altering the load-displacement curves of the springs
- Figure 5. Schematic diagram for each phase of the load-displacement curve
- Figure 6. FE model with natural dentition (model-N). Tooth root is displayed with permeability
- Figure 7. Load-displacement curve of the left canine
- Figure 8. Distribution of the occlusal forces