Results : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [2]
In general, significantly more S. sanguinis adhered to ceramic surfaces than to titanium surfaces (p < 0.05 for all comparisons, except for smooth ceramic compared with rough titanium: p = 0.244) (Fig. 3b). Titanium specimens (smooth titanium 3263 ± 475 rfu; medium titanium 3331 ± 641 rfu; rough titanium 3656 ± 855 rfu) tended to show higher streptococcal adhesion on rough surfaces in comparison to medium and smooth surfaces, but the differences between the tested material groups were not statistically significant (p > 0.05 for all comparisons). On ceramic surfaces (smooth ceramic 4668 ± 1562 rfu; medium ceramic 5590 ± 1493 rfu, rough ceramic 6875 ± 428 rfu), higher surface roughness led to increased S. sanguinis adhesion (p < 0.05 for all comparisons, except for smooth ceramic compared with medium ceramic: p = 0.244).
S. epidermidis (Fig. 4a) tended to show higher bacterial adhesion on hydrophobic surfaces (titanium smooth 5337 ± 1511 rfu, titanium rough 5916 ± 2472 rfu, ceramic smooth 3395 ± 1738 rfu, and ceramic rough 2676 ± 1476 rfu) than on hydrophilic surfaces (titanium smooth 3897 ± 985 rfu, titanium rough 5662 ± 1884 rfu, ceramic smooth 2522 ± 775 rfu, and ceramic rough 1644 ± 1225 rfu), but these differences were not statistically significant (p > 0.05 for all comparisons). A comparison of rough and smooth specimens did not show any differences in staphylococcal adhesion (p > 0.05 for all comparisons).
In general, the potential to adhere S. sanguinis was significantly higher for all ceramic surfaces—hydrophobic and hydrophilic—than for titanium specimens (p < 0.05 for all 16 comparisons) (Fig. 4b). A comparison of hydrophobic and hydrophilic surfaces did not show any statistically significant differences (for smooth titanium: p = 0.997; for rough titanium: p = 0.999; for smooth ceramic: p = 0.723; and for rough ceramic: p > 0.999). Hydrophilic titanium and hydrophilic ceramic surfaces did not show any statistically significant differences between rough and smooth surfaces (p > 0.05 for both comparisons).
Serial posts:
- Abstract : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants
- Background : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [1]
- Background : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [2]
- Methods : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [1]
- Methods : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [2]
- Methods : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [3]
- Results : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [1]
- Results : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [2]
- Discussion : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [1]
- Discussion : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [2]
- Discussion : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [3]
- Discussion : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [4]
- Discussion : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [5]
- Conclusions : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants
- References : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [1]
- References : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [2]
- References : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [3]
- References : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [4]
- References : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants [5]
- Acknowledgements : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants
- Author information : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants
- Ethics declarations : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants
- Rights and permissions : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants
- About this article : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants
- Table 1 Arithmetic average of surface roughness Ra (means and standard deviations [μm]) and wettability (means and standard deviations [°]) of the ten tested material : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants
- Fig. 1. AFM images for 30 μm × 30 μm (a–d) and 3 μm × 3 μm scan areas (e–h) of rough ceramic (a, e), smooth ceramic (b, f), rough titanium (c, g), and smooth titanium (d, h) : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implant
- Fig. 2. Comparison of AFM surface profiles of rough ceramic (CeROUGH), smooth ceramic (CeSMOOTH), rough titanium (TiROUGH), and smooth titanium (TiSMOOTH); scan sizes are 30 μm in a and 1 μm in b : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implant
- Fig. 3. Relative fluorescence intensities (rfi) of S. epidermidis (a) and S. sanguinis (b) on titanium and ceramic implant surfaces with different grades of roughness (means and standard deviations) : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implant
- Fig. 4. Relative fluorescence intensities (rfi) of S. epidermidis (a) and S. sanguinis (b) on titanium and ceramic implant surfaces with different grades of roughness and hydrophobicity (means and standard deviations) : The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implant