Fig. 5. ROC analyses of PICF calprotectin and NTx to predict peri-implant diseases. PICF samples were collected from sites with and without peri-implant diseases (n = 74). Calprotectin (a) and NTx (b) amounts in PICF samples were subjected to ROC curve analysis. AUC values for calprotectin and NTx amounts were 0.964 (95% CI = 0.913–0.996, P
Fig. 4. Correlation between NTx amounts and PD or BL rates. a The correlation between PICF NTx amounts and PD was evaluated in PICF samples from peri-implant disease and healthy groups (n = 74, ρ = 0.434, P
Fig. 3. Relationship between PICF calprotectin amounts and PD or GI scores. a The relationship between PICF calprotectin amounts and PD was evaluated in PICF samples from peri-implant disease and healthy groups (n = 74, ρ = 0.709, P
Fig. 2. Comparison of NTx levels in PICF. NTx amounts (a) in PICF samples from peri-implant disease sites (n = 40, diseased) and non-diseased sites (n = 34, healthy) were measured by ELISA, and its concentration (b) was normalized by the volume of PICF. Horizontal bars show the mean values of each group. ‡P
Fig. 1. Comparison of calprotectin levels in PICF. PICF samples were collected from peri-implant disease sites (n = 40, diseased) and non-diseased sites (n = 34, healthy). Calprotectin amounts (a) were measured by ELISA, and its concentration (b) was normalized by the volume of PICF. Horizontal bars show the mean values of each group. *P
Participants
Number of participants
35
Gender (male/female)
10:25
Age (y...
Sakamoto, E., Kido, R., Tomotake, Y. et al. Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study.
Int J Implant Dent 4, 26 (2018). https://doi.org/10.1186/s40729-018-0138-2
Download citation
Received: 22 December 2017
Accepted: 25 May 2018
Published: 13 September 2018
DOI: h...
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were m...
The present study was approved by the Ethics Committees of Tokushima University Hospital (nos. 2368 and 2719) in accordance with the Helsinki Declaration of 2013. Participants with peri-implants gave their written informed consent after receiving an explanation of this clinical study.
Authors Eijiro Sakamoto, Rie Kido, Yoritoki Tomotake, Yoshihito Naitou, Yuichi Ishida and Jun-ichi Kido declare t...
Correspondence to
Jun-ichi Kido.
Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan
Eijiro Sakamoto, Rie Kido & Jun-ichi Kido
Oral Implant Center, Tokushima University Hospital, Tokushima, Japan
Yoritoki Tomotake & Yoshihito Naitou
Department of Oral and Maxillofacial Prosthodontics, Institute of Biomedical S...
We thank Dr. Toyoko Tajima (Oral Implant Center, Tokushima University Hospital) and Dr. Toshihiko Nagata, Dr. Koji Naruishi, Dr. Hiromichi Yumoto, Dr. Masami Ninomiya, Dr. Mika Bando, Dr. Yuji Inagaki, Dr. Chie Mihara, Dr. Takahisa Ikuta, Mr. Ryosuke Takagi, and Mr. Kohei Nonaka (Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School)...
Aboyoussef H, Carter C, Jandinski JJ, Panagakos FS. Detection of prostaglandin E2 and matrix metalloproteinases in implant crevicular fluid. Int J Oral Maxillofac Implants. 1998;13:689–96.
Melo RF, Lopes BM, Shibli JA, Marcantonio E Jr, Marcantonio RA, Galli GM. Interleukin-1β and interleukin-6 expression and gene polymorphisms in subjects with peri-implant disease. Clin Implant Dent Relat Res...
Becerik S, Afacan B, Öztürk VÖ, Atmaca H, Emingil G. Gingival crevicular fluid calprotectin, osteocalcin and cross-linked N-terminal telopeptide levels in health and different periodontal diseases. Dis Markers. 2011;31:343–52.
Becerik S, Gürkan A, Afacan B, Özgen ÖV, Atmac H, Töz H, et al. Gingival crevicular fluid osteocalcin, N-terminal telopeptides, and calprotectin levels in cyclospo...
Fagerhol MK, Andersson KB, Naess-Andersen CF, Brandtzaeg P, Dale I. Calprotectin (the L1 leukocyte protein). In: Smith UL, Dedman JR, editors. Stimulus response coupling: the role of intracellular calcium-binding proteins. Boca Raton, FL: CRC Press; 1990. p. 187–210.
Stříž I, Trebichavský I. Calprotectin—a pleiotropic molecule in acute and chronic inflammation. Physiol Res. 2004;53:245–...
Mombelli A, Müller N, Cionca N. The epidemiology of peri-implantitis. Clin Oral Implants Res. 2012;23(Suppl 6):67–76.
Figuero E, Graziani F, Sanz I, Herrera D, Sanz M. Management of peri-implant mucositis and peri-implantitis. Periodontol. 2000;2014(66):255–73.
Hämmerle CHF, Glauser R. Clinical evaluation of dental implant treatment. Periodontol. 2000;2004(34):230–9.
Heitz-Mayfield LJA....
Aspartate aminotransferase
Bone loss
Bleeding on probing
Cumulative interceptive supportive therapy
Gingival crevicular fluid
Gingival index
Cross-linked C-telopeptide of type I collagen
Interleukin-1β
Matrix metalloproteinase-8
Nuclear factor-κB
Cross-linked N-telopeptide of type I collagen
Osteocalcin
Probing depth
Peri-implant crevicular fluid
Receptor activator of NF-κB ligand...
Calprotectin and NTx in PICF are markers of inflammation and bone resorption in peri-implant tissues and may be useful diagnostic markers for peri-implant diseases.
Treatments for peri-implant diseases are selected by CIST [6], in which clinical indicators including PD, BOP, implant mobility, and BL on radiographs are used to diagnose peri-implant diseases. However, these clinical indicators are not considered to be sufficiently accurate or objective for the diagnosis of peri-implant diseases. Biomarkers in PICF contribute to the diagnosis of peri-implant dis...
We did not classify peri-implant diseases into peri-implant mucositis and peri-implantitis in this pilot study. Peri-implant mucositis does not show BL, whereas peri-implantitis shows BL of more than 2.5 or 3 mm on intra-oral radiographs [39, 40]. Figuero et al. [2] introduced plural diagnostic criteria for peri-implant mucositis and peri-implantitis. Rakic et al. [5] defined peri-implantitis as ...
Diagnostic studies on peri-implant diseases using biomarkers in PICF have been performing because clinical indicators do not necessarily lead to an accurate evaluation of peri-implant diseases [5, 7, 8, 32]. Calprotectin levels were significantly higher in periodontitis GCF than in healthy GCF, and thus, calprotectin is regarded as a useful inflammatory marker for periodontal diseases [16, 17, 19]...
NTx amounts in PICF samples correlated with PD at PICF sampling sites (ρ = 0.434, P
Thirty-four of PICF samples were collected from healthy peri-implant sites and forty samples from diseased sites (Table 1). The mean PD in diseased sites was 4.70 mm, which was significantly deeper than that of healthy sites (2.32 mm). The mean GI score of diseased sites was 1.5, which was significantly higher than that of healthy sites. A significant difference was observed in the BOP-positive...
Calprotectin in PICF samples was determined using Calprotectin Human ELISA kit® (Hycult Biotech, PB Uden, the Netherlands) according to the instruction manual. Briefly, the extracted PICF solution was diluted to 100–200-fold using dilution buffer provided in the kit. The diluted PICF solution was added to wells coated with an antibody of human calprotectin and incubated at room temperature for ...
The present clinical study was approved by the Ethics Committees of Tokushima University Hospital (nos. 2368 and 2719) in accordance with the Helsinki Declaration of 2013 and performed from November 2016 to August 2017. Patients who received dental implants from 3 to 9 years ago, had healthy or diseased implants with peri-implant diseases, and visited at Tokushima University Hospital for the main...
Calprotectin (S100A8/S100A9) is an inflammation-related protein that is produced in leukocytes, macrophages/monocytes, and epithelial cells, and its level increases in several inflammatory diseases including ulcerative colitis, rheumatoid arthritis, and cystic fibrosis [14, 15]. Calprotectin was previously detected in GCF, and its level was significantly higher in GCF from periodontal disease site...
Dental treatments with implants are now being widely performed due to advances in the development of surgical procedures for dental implants and prosthodontics. However, the incidence of peri-implant diseases has been increasing with implant placement [1], and thus, the early detection of these diseases is important for maintaining dental implants. Peri-implant diseases with inflammation and the d...
Peri-implant crevicular fluid (PICF) contains calprotectin and NTx, which are markers for inflammation and bone resorption, respectively. The aims of this pilot study were to compare calprotectin and NTx levels in PICF from implant sites with or without peri-implant diseases and to evaluate the usefulness of calprotectin and NTx as diagnostic markers for peri-implant diseases.
Thirty-five patient...