Background : Long-term radiographic assessment of maxillary sinus floor augmentation using beta-tricalcium phosphate: analysis by cone-beam computed tomography [1]
The maxillary sinus gradually expands after birth and becomes fully pneumatized with the eruption of all permanent teeth. Although the physiological cause and maxillary sinus pneumatization are largely unknown, it is believed that genetics, atmospheric pressure, and hormones are involved in it. This sinus is closely related to the root apex of the premolar and molar teeth, and it is either separated from the teeth by a thin layer of bone or its mucous membrane is in direct contact with the teeth. The pneumatization of the maxillary sinus and the reduction in the bone wall thickness resulting from the loss of teeth is attributed to atrophy caused by a reduction in stimulation to the bone. It is also believed that physiological effects of the mucous membrane of the maxillary sinus as well as factors such as osteoclasts and loss of tooth root resistance to atmospheric pressure in the maxillary sinus are considered to play a role [1–3].
When an implant is placed in the maxillary molar region with atrophy, the maxillary sinus floor is close to the alveolar crest. Thus, some cases may require bone grafting for maxillary sinus floor augmentation. Initially, the gold standard for bone grafting material used to perform this procedure was autogenous bone. The advantages of autogenous bone graft are that it has osteogenic, osteoinductive, and osteoconductive properties. It has been reported that the release of growth factors, such as platelet-rich plasma and transforming growth factor-β and early vascularization from the donor bone enables remodeling within 4–6 months after implant placement. Although the transplanted bone used in maxillary sinus floor augmentation varies, it has been reported that approximately 1.5 cm3 is required to elevate the sinus floor by 10 mm. This requires donor sites with sufficient bone mass (e.g., the mental region and mandibular ramus in the oral cavity or the iliac crest and tibia outside the oral cavity), and it places great stress on both the practitioner and the patient [4, 5]. In recent years, maxillary sinus floor augmentation has been introduced using various bone grafting materials to decrease invasiveness. In Japan, xenogeneic bone grafts are not permitted for ethical reasons; instead, synthetic bone grafting agents that are not derived from animals, such as hydroxyapatite (HA) and β-TCP, have been used. However, unlike nonabsorbable materials such as HA, β-TCP has properties to get absorbed in the body and to be replaced by the bone; in addition, its usefulness has been reported in orthopedic surgery and maxillofacial surgery [6, 7]. We have achieved good outcomes using β-TCP as the bone grafting material for maxillary sinus floor augmentation. However, the predictability of the material and the change in absorption of the transplanted material mass remain largely unknown.
Serial posts:
- Abstract : Long-term radiographic assessment of maxillary sinus floor augmentation using beta-tricalcium phosphate: analysis by cone-beam computed tomography
- Background : Long-term radiographic assessment of maxillary sinus floor augmentation using beta-tricalcium phosphate: analysis by cone-beam computed tomography [1]
- Background : Long-term radiographic assessment of maxillary sinus floor augmentation using beta-tricalcium phosphate: analysis by cone-beam computed tomography [2]
- Methods : Long-term radiographic assessment of maxillary sinus floor augmentation using beta-tricalcium phosphate: analysis by cone-beam computed tomography [1]
- Methods : Long-term radiographic assessment of maxillary sinus floor augmentation using beta-tricalcium phosphate: analysis by cone-beam computed tomography [2]
- Methods : Long-term radiographic assessment of maxillary sinus floor augmentation using beta-tricalcium phosphate: analysis by cone-beam computed tomography [3]
- Results : Long-term radiographic assessment of maxillary sinus floor augmentation using beta-tricalcium phosphate: analysis by cone-beam computed tomography [1]
- Results : Long-term radiographic assessment of maxillary sinus floor augmentation using beta-tricalcium phosphate: analysis by cone-beam computed tomography [2]
- Discussion : Long-term radiographic assessment of maxillary sinus floor augmentation using beta-tricalcium phosphate: analysis by cone-beam computed tomography [1]
- Discussion : Long-term radiographic assessment of maxillary sinus floor augmentation using beta-tricalcium phosphate: analysis by cone-beam computed tomography [2]
- Conclusions : Long-term radiographic assessment of maxillary sinus floor augmentation using beta-tricalcium phosphate: analysis by cone-beam computed tomography
- References : Long-term radiographic assessment of maxillary sinus floor augmentation using beta-tricalcium phosphate: analysis by cone-beam computed tomography [1]
- References : Long-term radiographic assessment of maxillary sinus floor augmentation using beta-tricalcium phosphate: analysis by cone-beam computed tomography [2]
- Acknowledgements : Long-term radiographic assessment of maxillary sinus floor augmentation using beta-tricalcium phosphate: analysis by cone-beam computed tomography
- Author information : Long-term radiographic assessment of maxillary sinus floor augmentation using beta-tricalcium phosphate: analysis by cone-beam computed tomography
- Additional information : Long-term radiographic assessment of maxillary sinus floor augmentation using beta-tricalcium phosphate: analysis by cone-beam computed tomography
- Rights and permissions : Long-term radiographic assessment of maxillary sinus floor augmentation using beta-tricalcium phosphate: analysis by cone-beam computed tomography
- About this article : Long-term radiographic assessment of maxillary sinus floor augmentation using beta-tricalcium phosphate: analysis by cone-beam computed tomography
- Table 1 Age groups of the 30 patients : Long-term radiographic assessment of maxillary sinus floor augmentation using beta-tricalcium phosphate: analysis by cone-beam computed tomography
- Table 2 Observation period : Long-term radiographic assessment of maxillary sinus floor augmentation using beta-tricalcium phosphate: analysis by cone-beam computed tomography
- Table 3 The number of implants according to site : Long-term radiographic assessment of maxillary sinus floor augmentation using beta-tricalcium phosphate: analysis by cone-beam computed tomography
- Table 4 The distribution of CBCT examination after 2.5 years : Long-term radiographic assessment of maxillary sinus floor augmentation using beta-tricalcium phosphate: analysis by cone-beam computed tomography
- Table 5 Radiographic examination of BV (volumetric changes in graft bone over time) : Long-term radiographic assessment of maxillary sinus floor augmentation using beta-tricalcium phosphate: analysis by cone-beam computed tomography
- Table 6 Radiographic examination of BH (changes in bone height surrounding the implant) : Long-term radiographic assessment of maxillary sinus floor augmentation using beta-tricalcium phosphate: analysis by cone-beam computed tomography
- Table 7 The radiographic measurements of liner parameters at immediately after surgery (RBH, IL, SW) : Long-term radiographic assessment of maxillary sinus floor augmentation using beta-tricalcium phosphate: analysis by cone-beam computed tomography
- Table 8 Examination of the impact of RBH, IL, SW, and iBH in the height from the implant tip to the bone integration site (BH) : Long-term radiographic assessment of maxillary sinus floor augmentation using beta-tricalcium phosphate: analysis by cone-beam computed tomography
- Fig. 1. Treatment protocol for the present study. Postoperative CBCT was performed a minimum of three times, i.e., immediately, 6 months, and 2.5 years after implant placement : Long-term radiographic assessment of maxillary sin
- Fig. 2. Radiographic examination of the volume of the bone graft (BV): Calculation of area on the frontal plane prior to and immediately after surgery using polygon tool. The polygon tool is included in the CT device, which was dragged around the perimeter of the target site to measure area. Graft volume calculation method (sum of the area and calculation of volume). Volume cm3 = area cm2 × n (number of images) : Long-term radiographic assessment of maxillary sin
- Fig. 3. Radiographic examination of the height of the bone surrounding the implant (BH): Measurement of changes in the height of the implant tip to the bone fixation part over time in the frontal plane: the distance measured from the intersecting point of the long axis of the implant and the maxillary sinus floor to the implant tip: +maxillary side, −alveolar crest side. The liner valuables: residual bone height (RBH), implant length (IL), and width of sinus (SW) : Long-term radiographic assessment of maxillary sin
- Fig. 4. Clinical findings of the second surgery on biopsy at 6 months. The degree of residual grafting materials varied depending on the patient. a most of the β-TCP remained. b Replacement of the β-TCP by new bone had progressed : Long-term radiographic assessment of maxillary sin
- Fig. 5. Radiographic examination (long-term changes in bone height surrounding the implant) n = 20 Number of implants. A total of 5 CBCT scans were taken prior to surgery, immediately after surgery, 6 months after surgery, 1–2 years after surgery, and 3–5 years after surgery : Long-term radiographic assessment of maxillary sin
- Fig. 6. Radiographic examination: The relationship between changes in the maxillary sinus floor associated with a reduction in the grafted bone and the implant tip (a immediately after surgery, b 5 years after surgery) : Long-term radiographic assessment of maxillary sin