Background : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles [2]
Modern radiographic imaging techniques in combination with advanced computer designing software could reconstruct a three-dimensional image of large boney defects [16]. Designing the shape of the required scaffold could easily be performed to accurately fit the available defect size using advanced imaging and designing software [17]. Finally, the required shape could be directly milled from different materials using CAD/CAM technology and the milled scaffold could be inserted in the exposed boney defect.
The aim of this study was to evaluate osteogenesis ability of customized CAD/CAM porous zirconia scaffolds inserted in healed boney defects in the mandible of a dog model. The proposed hypothesis of this study was that hydroxyapatite-enriched zirconia scaffolds would enhance osteogenesis ability compared to the controls.
Serial posts:
- Background : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles [1]
- Background : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles [2]
- Methods : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles [1]
- Methods : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles [2]
- Methods : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles [3]
- Results : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles
- Discussion : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles [1]
- Discussion : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles [2]
- Conclusions : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles
- References : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles [1]
- References : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles [2]
- Acknowledgements : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles
- Author information : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles
- Rights and permissions : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles
- About this article : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles
- Fig. 1. a SEM image, ×10,000, demonstrating internal porosity of the fabricated zirconia scaffolds. b SEM image, ×30,500, demonstrating agglomeration of nano-hydroxyapatite particles filling the porous structure : Osteogenesis ability of CAD/CAM porous zirconia sc
- Fig. 2. a Histological section demonstrating new bone growth (white arrow) in HA-enriched zirconia scaffold (black arrow). Unmineralized bone stained blue. Almost entire surface porosity was filled with new dense bone. b Histological section demonstrating bone growth in HA-enriched zirconia scaffold starting from the periphery of the surgical wound (white arrow). Islands of entrapped HA particles were surrounded by mineralized boney matrix (black arrow) which were identified using EDX : Osteogenesis ability of CAD/CAM porous zirconia sc
- Fig. 3. a Histological section demonstrating bone growth in control zirconia scaffold (white arrow). Mineralized bone formation (black arrow) was less dense compared to HA-enriched scaffolds. b Histological section showing different sizes of pores present in porous zirconia scaffolds (Control specimen). Mineralization started by lining pore walls (white arrow). Unmineralized bone stained blue : Osteogenesis ability of CAD/CAM porous zirconia sc
- Fig. 4. a Peri-apical X-ray of zirconia scaffold immediately placed in bone defect. Margins between scaffold and bone are clearly demarcated. b Peri-apical X-ray of zirconia scaffold after completion of healing time. Margins between bone defect and scaffold are less demarcated due to new bone growth : Osteogenesis ability of CAD/CAM porous zirconia sc