References : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles [2]
Naleway SE, Fickas KC, Maker YN, Meyers MA, McKittrick J. Reproducibility of ZrO2-based freeze casting for biomaterials. Mater Sci Eng C Mater Biol Appl. 2016;61:105–12.
Song YG, Cho IH. Characteristics and osteogenic effect of zirconia porous scaffold coated with beta-TCP/HA. J Adv Prosthodont. 2014;6:285–94.
Okano T, et al. Absorbed and effective doses from cone beam volumetric imaging for implant planning. Dentomaxillofac Radiol. 2009;38:79–85.
Anssari Moin D, Hassan B, Wismeijer D. A novel approach for custom three-dimensional printing of a zirconia root analogue implant by digital light processing. Clin Oral Implants Res. 2016; 25.a head of print.
Yamashita D, et al. Effect of surface roughness on initial responses of osteoblast-like cells on two types of zirconia. Dent Mater J. 2009;28:461–70.
Aboushelib M, Salem N, Abotaleb A, Abd El Moniem N. Influence of surface nano-roughness on osseointegration of zirconia implants in rabbit femur heads using selective infiltration etching technique. J Oral Implantol 2012;39:583–90.
Kim HW, et al. Porous ZrO2 bone scaffold coated with hydroxyapatite with fluorapatite intermediate layer. Biomaterials. 2003;24:3277–84.
Kim HW, Kim HE, Salih V, Knowles JC. Dissolution control and cellular responses of calcium phosphate coatings on zirconia porous scaffold. J Biomed Mater Res A. 2004;68:522–30.
Zhu W, Zhao Y, Ma Q, Wang Y, Wu Z, Weng X. 3D-printed porous titanium changed femoral head repair growth patterns: osteogenesis and vascularisation in porous titanium. J Mater Sci Mater Med. 2017;28:62–5.
Arifvianto B, Leeflang MA, Zhou J. Diametral compression behavior of biomedical titanium scaffolds with open, interconnected pores prepared with the space holder method. J Mech Behav Biomed Mater. 2017;68:144–54.
Chen H, Wang C, Yang X, Xiao Z, Zhu X, Zhang K, Fan Y, Zhang X. Construction of surface HA/TiO coating on porous titanium scaffolds and its preliminary biological evaluation. Mater Sci Eng C Mater Biol Appl. 2017;70:1047–56.
Serial posts:
- Background : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles [1]
- Background : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles [2]
- Methods : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles [1]
- Methods : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles [2]
- Methods : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles [3]
- Results : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles
- Discussion : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles [1]
- Discussion : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles [2]
- Conclusions : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles
- References : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles [1]
- References : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles [2]
- Acknowledgements : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles
- Author information : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles
- Rights and permissions : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles
- About this article : Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles
- Fig. 1. a SEM image, ×10,000, demonstrating internal porosity of the fabricated zirconia scaffolds. b SEM image, ×30,500, demonstrating agglomeration of nano-hydroxyapatite particles filling the porous structure : Osteogenesis ability of CAD/CAM porous zirconia sc
- Fig. 2. a Histological section demonstrating new bone growth (white arrow) in HA-enriched zirconia scaffold (black arrow). Unmineralized bone stained blue. Almost entire surface porosity was filled with new dense bone. b Histological section demonstrating bone growth in HA-enriched zirconia scaffold starting from the periphery of the surgical wound (white arrow). Islands of entrapped HA particles were surrounded by mineralized boney matrix (black arrow) which were identified using EDX : Osteogenesis ability of CAD/CAM porous zirconia sc
- Fig. 3. a Histological section demonstrating bone growth in control zirconia scaffold (white arrow). Mineralized bone formation (black arrow) was less dense compared to HA-enriched scaffolds. b Histological section showing different sizes of pores present in porous zirconia scaffolds (Control specimen). Mineralization started by lining pore walls (white arrow). Unmineralized bone stained blue : Osteogenesis ability of CAD/CAM porous zirconia sc
- Fig. 4. a Peri-apical X-ray of zirconia scaffold immediately placed in bone defect. Margins between scaffold and bone are clearly demarcated. b Peri-apical X-ray of zirconia scaffold after completion of healing time. Margins between bone defect and scaffold are less demarcated due to new bone growth : Osteogenesis ability of CAD/CAM porous zirconia sc