Background : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [1]
Complications in implant dentistry are generally divided into biological and mechanical complications. Mechanical complications include fracture of the implant body or prosthetic components such as chipping of ceramic material as well as loosening or fracture of implant abutments or fixation screws. This has a documented prevalence of 6 to 13% and 0.4 to 2% respectively after 5 years [1-7].
With respect to the etiology of screw loosening, several causes are to be considered [8]. Screw-nut systems generally become unstable when the load that is applied to the system exceeds that of the preload of the screw that causes a clamping force preventing separation of the joint [9]. Preload is proportional to the tightening torque at placement. Hence, tightening torque on the one hand has a significant effect on screw loosening [10]. Embedment relaxation or settling can be overcome by retorquing abutment screws after a certain period of time, increasing joint stability [9,11]. On the other hand, the magnitude of forces applied to the system is of major influence. The transfer of high forces can be generated by bruxers, through non-occlusal loading or because of a non-passive fit of suprastructures [8,12-15]. Other factors that are of influence of a systems’ resistance to screw loosening include lubrication, screw design, screw material, and surface characteristics [16-20]. Especially implant designs with an external hex configuration are prone to abutment screw loosening [21].
Fracture of abutments or abutment screws can be contributed to acute trauma, chronic overload, production flaws, or errors in screw-nut design. If fractured screw components cannot be removed, it may render the implant unrestorable or forces the dentist to creative solutions, such as cementable components. Fortunately, fractured screw components will generally be loose because the preload has not been retained. In that case, they may be removed by manipulating them counter clockwise with a straight probing instrument. On occasion, screw remnants cannot be mobilized, and removal remains a clinical challenge. Careful instrumentation when attempting to remove them should prevent damage to the internal thread of the implant and its surrounding tissues. The use of a fine-tipped hand instrument, a round burr turning counter clockwise, or drilling a slot in the screw in order to get more grip can be attempted to loosen the fragment. Specific instrumentation to remove broken screws from implants is available from most implant suppliers.
Serial posts:
- Abstract : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types
- Background : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [1]
- Background : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [2]
- Methods : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types
- Results : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [1]
- Results : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [2]
- Discussion : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [1]
- Discussion : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [2]
- Discussion : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [3]
- Conclusions : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types
- References : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [1]
- References : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [2]
- References : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [3]
- References : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [4]
- Acknowledgements : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types
- Author information : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types
- Additional information : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types
- Rights and permissions : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types
- About this article : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types
- Figure 1. Implant embedded in epoxy resin with thermocouple at the outer surface. : Temperature rise during removal of fractured components out of the implant
- Figure 2. Results for all implants instrumented with two tested ultrasonic devices, either with or without cooling. (a) Temperature rise when instrumenting with the Satelec ultrasonic device without cooling. The horizontal dotted line denotes the assumed critical rise in temperature. Temperature rise at 30 s: bone level 3.3 mm > bone level 4.1 mm > Straumann regular neck 3.3 mm = Astra 3.5 mm = Straumann regular neck 4.8 mm. (b) Temperature rise when instrumenting with the Satelec ultrasonic device with cooling. The horizontal dotted line denotes the assumed critical rise in temperature. Temperature rise at 30 s: bone level 3.3 mm = Astra 3.5 implant > Straumann regular neck 3.3 mm = Straumann regular neck 4.8 mm. Temperature rise at the bone level 4.1 implant lies in between the bone level 3.3 mm and Astra 3.5 mm implant and both Straumann implants, but not significantly different from either of these implants. (c) EMS without cooling. Temperature rise at 30 s: bone level 3.3 mm = bon