Open hour: senin - sabtu 09:00:00 - 20:00:00; minggu & tanggal merah tutup
Results : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [1]

Results : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [1]

author: Eric W Meisberger, Sjoerd J G Bakker, Marco S Cune | publisher: drg. Andreas Tjandra, Sp. Perio, FISID

The results for all implants instrumented with the two tested ultrasonic devices, either with or without cooling, are presented in Figure 2a,b,c,d.

For the Satelec device, applied without coolant, only the temperature of the Straumann wide body regular neck implant never exceeded the 50 threshold. The data proved normally distributed (Kolmogorov-Smirnov test, p > 0.05). Analysis of variance indicated statistically significant differences among the implant types (F = 33.3, df 4, p < 0.001). The highest mean temperature increase at 30 s was seen around the 3.3-mm bone level implant (13.0°C), followed by the 4.1-mm bone level implant (9.5°C), and subsequently by the other three implant types (Student-Newman-Keuls (SNK) test, Figure 2a). When coolant was used during instrumentation, an increase of temperature exceeding 5°C was not seen. There were some differences between the implant types (ANOVA, F = 6.4, df 4, p < 0.01), primarily between the bone level 3.3 mm and Astra 3.5-mm implant on the one hand and both Straumann tissue level implants on the other hand (SNK test). Interestingly, when instrumentation and cooling had stopped, the outer temperature of all implants raised markedly above the 5°C critical threshold during the following 10 s, for both bone level implant types up to approximately 10°C (Figure 2b).

For the EMS device when applied without cooling, an increase at 30 s above the threshold was only seen for the 3.3- and 4.1-mm bone level implant types (approximately 6°C), which was statistically significantly higher than the rise in temperature seen in the other three implant types (ANOVA, F = 3.4, df = 4, p = 0.04, and SNK test, Figure 2c). Cooling the EMS device proved pretty efficient at 30 s, without differences between the groups. Only a mild increase of the outer temperature was observed to a maximum of 2°C. It takes some time for cooling to take effect. When instrumentation and cooling is stopped, no increase of outer implant temperature occurs, which contrasts the findings with the Satelec device (Figure 2d).

Serial posts:


id post:
New thoughts
Me:
search
glossary
en in