Methods : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types
Two different types of commercially available ultrasonic devices, set at their lowest intensity for endodontic purpose, were used to instrument the internal portion of five different implant types, either with or without cooling. Intermittent anti-clockwise strokes were made, assuring that the tip was constantly in contact with the inner implant wall, as much as possible mimicking the motion that would have been used in clinical practice.
The ultrasonic devices used were the Satelec Suprasson T Max (Acteon Group, Merignac, France) and the EMS miniMaster (EMS, Electro Medical Systems SA, Nyon, Switzerland) with non-diamant, non-cutting tips ET 20, Satelec, and Instrument A (EMS). The device allowed for internal cooling of the tip with the cooling liquid at 31°C during instrumentation.
The implants used were from different brands; all 8-mm long but with various diameters and designs: Astra 3.5 mm (Dentsply Implants, Mölndal, Sweden), bone level Regular CrossFit (RC) 4.1 mm, bone level Narrow CrossFit (NC) 3.3 mm, Straumann tissue level regular body regular neck 3.3 mm (Straumann, Basel, Switzerland), and Straumann tissue level wide body regular neck 4.8 mm (Straumann AG, Basel, Switzerland). A single implant per group was used. They were embedded in epoxy resin, with a thermocouple (TC-08, Pico Technology, St. Neots, Great Britain) glued to the outer implant surface, at a level corresponding with the anticipated marginal bone level in uncompromised conditions. The change in temperature was registered for 30 s, followed by a 30-s cooling down period, at 5-s intervals (Figure 1).
The primary outcome variable was defined as the difference in temperature between the start of instrumentation and after 30 s when comparing the different implants and the maximum rise in temperature (deltaTmax) where results were averaged per experimental condition (type of device, with or without coolant). All tests were performed three times, and the results were averaged per condition. Differences between several experimental conditions were analyzed by means of independent t-tests and univariate analysis of variance, after verification of normal distribution by human eyeballing and the Kolmogorov-Smirnov test. Where appropriate, post hoc analysis was performed using the Student-Newman-Keuls multiple comparison test. The value for α was set at 0.05 to distinguish statistical significancy.
Serial posts:
- Abstract : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types
- Background : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [1]
- Background : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [2]
- Methods : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types
- Results : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [1]
- Results : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [2]
- Discussion : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [1]
- Discussion : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [2]
- Discussion : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [3]
- Conclusions : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types
- References : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [1]
- References : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [2]
- References : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [3]
- References : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [4]
- Acknowledgements : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types
- Author information : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types
- Additional information : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types
- Rights and permissions : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types
- About this article : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types
- Figure 1. Implant embedded in epoxy resin with thermocouple at the outer surface. : Temperature rise during removal of fractured components out of the implant
- Figure 2. Results for all implants instrumented with two tested ultrasonic devices, either with or without cooling. (a) Temperature rise when instrumenting with the Satelec ultrasonic device without cooling. The horizontal dotted line denotes the assumed critical rise in temperature. Temperature rise at 30 s: bone level 3.3 mm > bone level 4.1 mm > Straumann regular neck 3.3 mm = Astra 3.5 mm = Straumann regular neck 4.8 mm. (b) Temperature rise when instrumenting with the Satelec ultrasonic device with cooling. The horizontal dotted line denotes the assumed critical rise in temperature. Temperature rise at 30 s: bone level 3.3 mm = Astra 3.5 implant > Straumann regular neck 3.3 mm = Straumann regular neck 4.8 mm. Temperature rise at the bone level 4.1 implant lies in between the bone level 3.3 mm and Astra 3.5 mm implant and both Straumann implants, but not significantly different from either of these implants. (c) EMS without cooling. Temperature rise at 30 s: bone level 3.3 mm = bon