References : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [3]
Eriksson AR, Albrektsson T. Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent. 1983;50:101–7.
Benington IC, Biagioni PA, Briggs J, Sheridan S, Lamey PJ. Thermal changes observed at implant sites during internal and external irrigation. Clin Oral Implants Res. 2002;13:293–7.
Li S, Chien S, Branemark PI. Heat shock-induced necrosis and apoptosis in osteoblasts. J Orthop Res. 1999;17:891–9.
Huh JB, Eckert SE, Ko SM, Choi YG. Heat transfer to the implant-bone interface during preparation of a zirconia/alumina abutment. Int J Oral Maxillofac Implants. 2009;24:679–83.
Nissan J, Gross M, Ormianer Z, Barnea E, Assif D. Heat transfer of impression plasters to an implant-bone interface. Implant Dent. 2006;15:83–8.
Gross M, Laufer BZ, Ormianer Z. An investigation on heat transfer to the implant-bone interface due to abutment preparation with high-speed cutting instruments. Int J Oral Maxillofac Implants. 1995;10:207–12.
Feuerstein O, Zeichner K, Imbari C, Ormianer Z, Samet N, Weiss EI. Temperature changes in dental implants following exposure to hot substances in an ex vivo model. Clin Oral Implants Res. 2008;19:629–33.
Ormianer Z, Laufer BZ, Nissan J, Gross M. An investigation of heat transfer to the implant-bone interface related to exothermic heat generation during setting of autopolymerizing acrylic resins applied directly to an implant abutment. Int J Oral Maxillofac Implants. 2000;15:837–42.
Ormianer Z, Feuerstein O, Assad R, Samet N, Weiss EI. In vivo changes in dental implant temperatures during hot beverage intake: a pilot study. Implant Dent. 2009;18:38–45.
Huttula AS, Tordik PA, Imamura G, Eichmiller FC, McClanahan SB. The effect of ultrasonic post instrumentation on root surface temperature. J Endod. 2006;32:1085–7.
Davis S, Gluskin AH, Livingood PM, Chambers DW. Analysis of temperature rise and the use of coolants in the dissipation of ultrasonic heat buildup during post removal. J Endod. 2010;36:1892–6.
Ettrich CA, Labossiere PE, Pitts DL, Johnson JD. An investigation of the heat induced during ultrasonic post removal. J Endod. 2007;33:1222–6.
Serial posts:
- Abstract : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types
- Background : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [1]
- Background : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [2]
- Methods : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types
- Results : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [1]
- Results : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [2]
- Discussion : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [1]
- Discussion : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [2]
- Discussion : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [3]
- Conclusions : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types
- References : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [1]
- References : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [2]
- References : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [3]
- References : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types [4]
- Acknowledgements : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types
- Author information : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types
- Additional information : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types
- Rights and permissions : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types
- About this article : Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types
- Figure 1. Implant embedded in epoxy resin with thermocouple at the outer surface. : Temperature rise during removal of fractured components out of the implant
- Figure 2. Results for all implants instrumented with two tested ultrasonic devices, either with or without cooling. (a) Temperature rise when instrumenting with the Satelec ultrasonic device without cooling. The horizontal dotted line denotes the assumed critical rise in temperature. Temperature rise at 30 s: bone level 3.3 mm > bone level 4.1 mm > Straumann regular neck 3.3 mm = Astra 3.5 mm = Straumann regular neck 4.8 mm. (b) Temperature rise when instrumenting with the Satelec ultrasonic device with cooling. The horizontal dotted line denotes the assumed critical rise in temperature. Temperature rise at 30 s: bone level 3.3 mm = Astra 3.5 implant > Straumann regular neck 3.3 mm = Straumann regular neck 4.8 mm. Temperature rise at the bone level 4.1 implant lies in between the bone level 3.3 mm and Astra 3.5 mm implant and both Straumann implants, but not significantly different from either of these implants. (c) EMS without cooling. Temperature rise at 30 s: bone level 3.3 mm = bon