Discussion : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [4]
It has been previously stated that the alteration of the implant surface during cleansing may attenuate biocompatibility [29]. However, several clinical studies revealed the considerable treatment effect even though there was certain expected damage on the implant surface [7, 34]. Therefore, it is assumed that the most important consideration for treating peri-implantitis in the clinical setting should be to improve the cleansability of any instrumentation to effectively remove biofilms irrespective of implant surface alteration.
In the present study, the gauze soaked in saline, rotary stainless steel instrument, and air abrasive demonstrated significantly greater cleansability to remove biofilms compared with the ultrasonic scaler on rough and machined surface implants. Generally, gauze soaked in saline appeared to possess the best cleansability among all the tested decontamination methods although there was no significant difference among the three methods with the greatest cleansability (G, Rot, Air). In the analysis between the two surfaces, surface characteristics significantly influenced total CFU counts between rough and machined surface implants when testing the control and gauze soaked in saline and ultrasonic scaler. Overall, machined surface implants tended to show lower CFU counts than rough surface implants apart from those treated with the Er:YAG laser.
Charalampakis et al. [23] examined the effectiveness of mechanical and chemical decontamination methods using titanium disks contaminated intraorally. They employed four decontamination methods: gauze in saline, chlorhexidine, delmopinol, and an essential oil mixture. The authors discovered there was no significant difference in CFU counts among the four methods. In the present study, our findings were in line with their report regarding the difficulty of removing biofilms from contaminated titanium surfaces. Even mechanical decontamination with a chemical agent did not yield any significant difference in CFU counts in their study. It has also been revealed that chemical agents in conjunction with mechanical debridement on contaminated implants could not augment a significant treatment effect [24]. This is one of the reasons why we focused on mechanical decontamination methods to cleanse the contaminated implant surfaces.
Serial posts:
- Abstract : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Background : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Materials and methods : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [1]
- Materials and methods : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [2]
- Results : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Discussion : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [1]
- Discussion : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [2]
- Discussion : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [3]
- Discussion : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [4]
- Discussion : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [5]
- Discussion : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [6]
- Conclusions : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Availability of data and materials : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Abbreviations : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- References : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [1]
- References : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [2]
- References : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [3]
- References : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [4]
- Acknowledgements : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Funding : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Author information : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Ethics declarations : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Additional information : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Rights and permissions : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- About this article : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Table 1 Qualitative evaluation by SEM analysis of micro- and macrothread areas of rough surface implants : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Table 2 Qualitative evaluation by SEM analysis of micro- and macrothread areas of machined surface implants : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Table 3 Quantitative analysis of CFU counts (× 105) from rough and machined surface implants after cleansing by each method : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Fig. 1. Hard resin splint model carrying 6 implants : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implant
- Fig. 2. GC Aadva® implant; 3.3-mm diameter, 8-mm length : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implant
- Fig. 3. Decontamination methods. a Gauze soaked in saline applied using a sawing motion. b Ultrasonic scaler (SUPRASSON P-MAX, Satelec-Acteon group, Bordeaux, France, power setting: P5, tip: Implant Protect IP3L/R). c Air abrasives (AIR-FLOW MASTER PIEZON®, EMS, Nyon, Switzerland, power setting: water flow 100%, air pressure 75%, powder: AIR-FLOW® PERIO POWDER, nozzle: PERIO-FLOW® nozzles, distance from the nozzle to the implant 2 mm). d Rotary stainless steel instrument (iBrush, NeoBiotech©, Los Angeles, USA, rotating speed 1500 rpm). e Er:YAG laser (Erwin AdvErL, J.Morita©, Kyoto, Japan, power setting 60 mJ/pulse, 10 pps, tip: C600F, distance from the tip to the implant 2 mm) : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implant
- Fig. 4. SEM analysis of 4 areas. 1 Rough surface—microthread area. 2 Rough surface—macrothread area. 3 Machined surface—microthread area. 4 Machined surface—macrothread area : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implant
- Fig. 5. Quantitative analysis of CFU counts on rough and machined surface implants after cleansing by each method. Asterisk represents vs Cont; a, vs G; b, vs US; c, vs Air; d, vs Rot; e, vs Las which indicates p < 0.05 : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implant
- Fig. 6. Comparison of cleansability of each decontamination method on the different implant surfaces. Asterisk indicates p < 0.05 : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implant