Results : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
During the experiment, three participants experienced small ulcers caused by the implants carried on the splints; however, it did not affect their daily life. Additionally, there were no signs of gingival inflammation in any participant.
G and Rot achieved relatively clean implant surfaces compared with Las in micro- and macrothread areas. US and Air demonstrated fair cleansability in microthread and good cleansability in macrothread areas, whereas Las did not show effective cleansability in either areas.
G and Rot attained almost clean implant surfaces compared with the other methods in micro- and macrothread areas. US and Air also showed good cleansability in micro- and macrothread areas. Las demonstrated fair to good cleansability in both areas.
Generally, biofilms appeared to be denser and more firmly attached to rough surface implants than machined surface implants before and after decontamination. Moreover, after cleansing, the machined surface implants appeared cleaner with thin layers and clusters of residual biofilms compared with rough surface implants. Overall, all methods tended to show better cleansability of machined surface implants than rough surface implants.
All decontamination methods showed significant residual bacterial reduction in terms of bacterial CFU count compared with Cont (p < 0.05). Moreover, G, Air, and Rot displayed significantly superior cleansability to US (p < 0.05).
All decontamination methods showed significantly better cleansability in terms of bacterial CFU counts compared with Cont (p < 0.05). Additionally, G, Air, and Rot demonstrated significantly better cleansability than US (p < 0.05), and only G showed significantly better cleansability compared with Las (p < 0.05).
Cont, G, and US demonstrated significant differences in bacterial CFU counts between rough and machined surface implants (p < 0.05). Although there was no significant difference in CFU counts between the two groups following Air, Rot, and Las application, machined surface implants appeared to show lower CFU counts than rough surface implants following Air and Rot application.
Serial posts:
- Abstract : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Background : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Materials and methods : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [1]
- Materials and methods : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [2]
- Results : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Discussion : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [1]
- Discussion : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [2]
- Discussion : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [3]
- Discussion : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [4]
- Discussion : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [5]
- Discussion : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [6]
- Conclusions : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Availability of data and materials : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Abbreviations : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- References : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [1]
- References : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [2]
- References : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [3]
- References : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [4]
- Acknowledgements : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Funding : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Author information : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Ethics declarations : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Additional information : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Rights and permissions : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- About this article : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Table 1 Qualitative evaluation by SEM analysis of micro- and macrothread areas of rough surface implants : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Table 2 Qualitative evaluation by SEM analysis of micro- and macrothread areas of machined surface implants : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Table 3 Quantitative analysis of CFU counts (× 105) from rough and machined surface implants after cleansing by each method : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Fig. 1. Hard resin splint model carrying 6 implants : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implant
- Fig. 2. GC Aadva® implant; 3.3-mm diameter, 8-mm length : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implant
- Fig. 3. Decontamination methods. a Gauze soaked in saline applied using a sawing motion. b Ultrasonic scaler (SUPRASSON P-MAX, Satelec-Acteon group, Bordeaux, France, power setting: P5, tip: Implant Protect IP3L/R). c Air abrasives (AIR-FLOW MASTER PIEZON®, EMS, Nyon, Switzerland, power setting: water flow 100%, air pressure 75%, powder: AIR-FLOW® PERIO POWDER, nozzle: PERIO-FLOW® nozzles, distance from the nozzle to the implant 2 mm). d Rotary stainless steel instrument (iBrush, NeoBiotech©, Los Angeles, USA, rotating speed 1500 rpm). e Er:YAG laser (Erwin AdvErL, J.Morita©, Kyoto, Japan, power setting 60 mJ/pulse, 10 pps, tip: C600F, distance from the tip to the implant 2 mm) : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implant
- Fig. 4. SEM analysis of 4 areas. 1 Rough surface—microthread area. 2 Rough surface—macrothread area. 3 Machined surface—microthread area. 4 Machined surface—macrothread area : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implant
- Fig. 5. Quantitative analysis of CFU counts on rough and machined surface implants after cleansing by each method. Asterisk represents vs Cont; a, vs G; b, vs US; c, vs Air; d, vs Rot; e, vs Las which indicates p < 0.05 : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implant
- Fig. 6. Comparison of cleansability of each decontamination method on the different implant surfaces. Asterisk indicates p < 0.05 : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implant