Discussion : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [6]
Through SEM analysis and CFU counts, it was demonstrated that, except for the Er:YAG laser, decontamination of the machined surface implant was easier than that of the rough surface implant regardless of decontamination method. Gauze soaked in saline and the ultrasonic scaler demonstrated a statistically significant difference in CFU counts between the two surfaces. In this context, a machined surface implant may be advantageous for recovering biocompatibility after cleansing the contaminated implant surface. In a randomized controlled trial, Carcuac et al. [6] demonstrated greater treatment success in a machined surface implant group than a modified surface implant group. The present study may support this clinical result, and the application of gauze soaked in saline may be regarded as a gold standard technique to cleanse a machined surface implant.
Serial posts:
- Abstract : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Background : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Materials and methods : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [1]
- Materials and methods : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [2]
- Results : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Discussion : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [1]
- Discussion : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [2]
- Discussion : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [3]
- Discussion : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [4]
- Discussion : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [5]
- Discussion : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [6]
- Conclusions : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Availability of data and materials : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Abbreviations : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- References : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [1]
- References : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [2]
- References : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [3]
- References : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study [4]
- Acknowledgements : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Funding : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Author information : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Ethics declarations : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Additional information : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Rights and permissions : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- About this article : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Table 1 Qualitative evaluation by SEM analysis of micro- and macrothread areas of rough surface implants : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Table 2 Qualitative evaluation by SEM analysis of micro- and macrothread areas of machined surface implants : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Table 3 Quantitative analysis of CFU counts (× 105) from rough and machined surface implants after cleansing by each method : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Fig. 1. Hard resin splint model carrying 6 implants : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implant
- Fig. 2. GC Aadva® implant; 3.3-mm diameter, 8-mm length : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implant
- Fig. 3. Decontamination methods. a Gauze soaked in saline applied using a sawing motion. b Ultrasonic scaler (SUPRASSON P-MAX, Satelec-Acteon group, Bordeaux, France, power setting: P5, tip: Implant Protect IP3L/R). c Air abrasives (AIR-FLOW MASTER PIEZON®, EMS, Nyon, Switzerland, power setting: water flow 100%, air pressure 75%, powder: AIR-FLOW® PERIO POWDER, nozzle: PERIO-FLOW® nozzles, distance from the nozzle to the implant 2 mm). d Rotary stainless steel instrument (iBrush, NeoBiotech©, Los Angeles, USA, rotating speed 1500 rpm). e Er:YAG laser (Erwin AdvErL, J.Morita©, Kyoto, Japan, power setting 60 mJ/pulse, 10 pps, tip: C600F, distance from the tip to the implant 2 mm) : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implant
- Fig. 4. SEM analysis of 4 areas. 1 Rough surface—microthread area. 2 Rough surface—macrothread area. 3 Machined surface—microthread area. 4 Machined surface—macrothread area : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implant
- Fig. 5. Quantitative analysis of CFU counts on rough and machined surface implants after cleansing by each method. Asterisk represents vs Cont; a, vs G; b, vs US; c, vs Air; d, vs Rot; e, vs Las which indicates p < 0.05 : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implant
- Fig. 6. Comparison of cleansability of each decontamination method on the different implant surfaces. Asterisk indicates p < 0.05 : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implant