Discussion : Evaluation of decontamination methods on implants (7)
Charalampakis et al. examined the effectiveness of mechanical and chemical decontamination methods using titanium disks contaminated intraorally. They employed four decontamination methods: gauze in saline, chlorhexidine, delmopinol, and an essential oil mixture. The authors discovered there was no significant difference in CFU counts among the four methods. In the present study, our findings were in line with their report regarding the difficulty of removing biofilms from contaminated titanium surfaces. Even mechanical decontamination with a chemical agent did not yield any significant difference in CFU counts in their study. It has also been revealed that chemical agents in conjunction with mechanical debridement on contaminated implants could not augment a significant treatment effect. This is one of the reasons why we focused on mechanical decontamination methods to cleanse the contaminated implant surfaces.
Sahrmann et al. tested three instruments (ultrasonic scaler, Gracey curette, and air abrasive device with glycine powder) on rough surface implants stained with indelible ink used as artificial plaque. There was a statistically significant difference in terms of stain removal rate. The air abrasive device showed the best result among the tested instruments. The result of this study is in line with our result showing the superiority of the air abrasive compared with the ultrasonic scaler.
Widodo et al. evaluated the efficacy of different methods used to cleanse titanium disks contaminated by S. aureus biofilm in vitro. They used the following methods: (i) rinsing with phosphate-buffered saline, (ii) rinsing with chlorhexidine digluconate 0.2%, (iii) application of photodynamic therapy (iv), use of a cotton pellet, (v) use of a titanium brush, and (vi) the combination of a titanium brush and photodynamic therapy. The results showed that the use of a titanium brush with/without photodynamic therapy was more effective in reducing the bacterial load on both polished and rough titanium implant surfaces than the other methods.
Serial posts:
- Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study
- Background : Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants
- Materials & methods : Evaluation of decontamination methods on implants (1)
- Materials & methods : Evaluation of decontamination methods on implants (2)
- Materials & methods : Evaluation of decontamination methods on implants (3)
- Results : Evaluation of decontamination methods on implants (3)
- Discussion : Evaluation of decontamination methods on implants (1)
- Discussion : Evaluation of decontamination methods on implants (2)
- Discussion : Evaluation of decontamination methods on implants (3)
- Discussion : Evaluation of decontamination methods on implants (4)
- Discussion : Evaluation of decontamination methods on implants (5)
- Discussion : Evaluation of decontamination methods on implants (6)
- Discussion : Evaluation of decontamination methods on implants (7)
- Discussion : Evaluation of decontamination methods on implants (8)
- Discussion : Evaluation of decontamination methods on implants (9)
- Figure 1. Hard resin splint model carrying 6 implants
- Figure 2. GC Aadva® implant; 3.3-mm diameter, 8-mm length
- Figure 3. Decontamination methods
- Figure 4. SEM analysis of 4 areas. 1 Rough surface—microthread area
- Figure 5. Quantitative analysis of CFU counts on implants
- Figure 6. Comparison of cleansability of each decontamination method
- Table 1 Qualitative evaluation by SEM analysis of micro- and macrothread areas of rough surface implants
- Table 2 Qualitative evaluation by SEM analysis of micro- and macrothread areas of machined surface implants
- Table 3 Quantitative analysis of CFU counts