Discussion : Evaluation of implant-materials as cell carriers for dental stem cells under in vitro conditions [1]
Scaffolds play an important role in tissue engineering. However, little is known about the proliferation and differentiation of DFCs and dNC-PCs on different types of materials. As we have learned from previous studies mechanical properties such as surface stiffness are decisive for a successful osteogenic differentiation of dental stem cells [13,14]. Moreover, we showed that bone substitute materials such as β-tricalcium phosphate (TCP) supports the osteogenic differentiation [10]. Our study proposed therefore that bone-like materials such as commercially available bone substitutes are superior for dental tissue engineering. Therefore, bone substitute materials SB and AP were compared with soft or connective tissue like materials. SB is synthetic and consists of 60% HAP and 40% TCP. In contrast, AP is an allograft product, which was derived from human donor bone. For comparison, two different soft materials silicone or PA were used in our study. Whereas silicone is routinely applied in regenerative medicine, the self-made PA scaffold has been very often used in cell biology studies [15].
dNC-PCs and DFCs attached on SB, AP, and silicone, but not on PA unless it was untreated. A modification with the extracellular matrix protein collagen permitted the attachment of dental cells. Interestingly, cell proliferation on silicone was hampered, because dental cells grew in non-attached spheroid cell clusters. This formation of spheroid cell clusters reminds on the neurogenic differentiation of DFCs [16-18]. The proliferation of DFCs on SB and AP was better than that of dNC-PCs, because the attachment of DFCs on these materials was lower than that of dNC-PCs. However, we conclude that bone substitute materials are suitable for dental cell attachment and proliferation. Our results for bone substitute materials are comparable to that of previous studies with different dental cell types. Kasaj and co-workers showed that cell adherence and cell proliferation of PDL cells on nanostructured HAP bone replacement grafts in vitro [19]. In another study, PDL cells adhere and proliferate on chitosan or on a combination of chitosan and nanostructured HAP [20]. In this setting, the combination of chitosan and nanostructured HAP was even favored by PDL cells. The adhesion and proliferation of dental pulp derived cells on HAP was demonstrated by Abe et al. [21].
Serial posts:
- Abstract : Evaluation of implant-materials as cell carriers for dental stem cells under in vitro conditions
- Background : Evaluation of implant-materials as cell carriers for dental stem cells under in vitro conditions [1]
- Background : Evaluation of implant-materials as cell carriers for dental stem cells under in vitro conditions [2]
- Methods : Evaluation of implant-materials as cell carriers for dental stem cells under in vitro conditions [1]
- Methods : Evaluation of implant-materials as cell carriers for dental stem cells under in vitro conditions [2]
- Methods : Evaluation of implant-materials as cell carriers for dental stem cells under in vitro conditions [3]
- Methods : Evaluation of implant-materials as cell carriers for dental stem cells under in vitro conditions [4]
- Results : Evaluation of implant-materials as cell carriers for dental stem cells under in vitro conditions [1]
- Results : Evaluation of implant-materials as cell carriers for dental stem cells under in vitro conditions [2]
- Discussion : Evaluation of implant-materials as cell carriers for dental stem cells under in vitro conditions [1]
- Discussion : Evaluation of implant-materials as cell carriers for dental stem cells under in vitro conditions [2]
- Conclusions : Evaluation of implant-materials as cell carriers for dental stem cells under in vitro conditions
- References : Evaluation of implant-materials as cell carriers for dental stem cells under in vitro conditions [1]
- References : Evaluation of implant-materials as cell carriers for dental stem cells under in vitro conditions [2]
- References : Evaluation of implant-materials as cell carriers for dental stem cells under in vitro conditions [3]
- Acknowledgement : Evaluation of implant-materials as cell carriers for dental stem cells under in vitro conditions
- Author information : Evaluation of implant-materials as cell carriers for dental stem cells under in vitro conditions [1]
- Author information : Evaluation of implant-materials as cell carriers for dental stem cells under in vitro conditions [2]
- Additional information : Evaluation of implant-materials as cell carriers for dental stem cells under in vitro conditions
- Additional file : Evaluation of implant-materials as cell carriers for dental stem cells under in vitro conditions
- Rights and permissions : Evaluation of implant-materials as cell carriers for dental stem cells under in vitro conditions
- About this article : Evaluation of implant-materials as cell carriers for dental stem cells under in vitro conditions
- Figure 1. Cell attachment on tested materials. (A) Relative cell adherence of DFCs and dNC-PCs; (B) dental cells did little adhere on PA; representative pictures of DFCs. : Evaluation of implant
- Figure 2. Cell proliferation of dNC-PCs and DFCs on tested materials. (A) and (B) Relative cell numbers; (C) spheroid cell clusters on silicone (representative pictures for DFCs); Silicone (24 and 48 h). : Evaluation of implant
- Figure 3. Evaluation of programmed cell death (apoptosis) in dental stem cells. (A) Flow cytometry analyses (for details materials and methods) show percentage of vital cells (black number), apoptotic cells (blue number), and dead cells (red number). (B) Western blot analyses show the expression of the pro-apoptotic marker BAX and the anti-apoptotic marker BCL2. : Evaluation of implant
- Figure 4. Osteogenic differentiation of dental stem cells. Normalized ALP activity of dNC-PCs and DFCs on AP and SB (A) and on silicone (B). Cells were differentiated on standard cell culture dishes for control. : Evaluation of implant
- Figure 5. Evaluation of osteogenic differentiation. (A) Clustergram of PCR-array results; (B-C) histology of differentiated dental cells on AP (B) and SB (C). Representative results are shown for dNC-PCs. : Evaluation of implant
- Figure 6. Cultivation and osteogenic differentiation of DFCs on PA after modification with collagen I. (Left) Relative cell number and (Right) normalized ALP activity. : Evaluation of implant