Background : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [1]
The progressive evolution of oral implant surface technology (i.e., micro to nanotopography and chemical composition) [1, 2], implant macrogeometry, surgical procedures [3,4,5], and loading protocols [6,7,8] has resulted in high survival and clinical success rates [9]. Accordingly, chemically active micro and nanostructured implant surfaces, presenting moderate surface roughness (Ra/Sa values between 1 and 2 μm), enhance host-to-implant interactions [10,11,12] and have been shown to shorten the period needed for time-critical functional implant loading (i.e., so-called immediate or early loading) [13,14,15].
Recent in vitro analyses support the concept that hydrophilic surfaces upregulate the expression of angiogenic factors, activate the production of anti-inflammatory factors, and downregulate the expression of pro-inflammatory cytokines by osteoblasts [16] and macrophage-like cells [17, 18], and regulate osteogenic differentiation and maturation of mesenchymal stem cells (MSCs) [10, 19, 20] and human osteoblast-like cells [21,22,23], increasing osteogenesis and decreasing osteoclastogenesis [11, 23, 24]. Furthermore, higher surface energy and hydrophilicity is demonstrated to induce faster bone-to-implant contact (%BIC) and bone density, both in preclinical in vivo experiments [25,26,27] and in patients [7, 28, 29]. Indeed, higher biomechanical stability as expression of primary and secondary bone anchorage is recorded following hydrophilic implant placement [26, 30].
Particularly, a superhydrophilic moderately rough titanium (Ti) implant surface (contact angle less than 5°) has been suggested to play a critical role during the early healing period [27] and establishment of a successful osseointegration [31] in preclinical in vivo studies. The microarchitecture and density of the trabecular bone formed around oral implants, characterized by a high ratio of metabolic activity and remodeling, is one of the main determinants of interfacial shear strength, mechanical resistance, and adaptation to overloading stress [32]. The potential of chemically modified superhydrophilic implant surfaces to enhance osteogenic differentiation and increase early bone apposition onto the implant may shorten the implant stability drop, occurring due to bone remodeling during the first few weeks of implantation [13]. Consequently, such microstructured surface technology may lessen the healing (non-loading) period and allow more readily immediate or early functional implant loading in patients with reduced bone density. Nevertheless, there is lack of knowledge regarding the intrinsic biomechanical aspects of osseointegration related to this specific implant surface technology (i.e., removal torque, removal energy, and connection stiffness) during the initial osseointegration process.
Serial posts:
- Abstract : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [1]
- Abstract : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [2]
- Background : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [1]
- Background : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [2]
- Methods : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [1]
- Methods : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [2]
- Methods : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [3]
- Results : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- Discussion : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [1]
- Discussion : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [2]
- Discussion : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [3]
- Conclusions : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- Notes : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- References : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [1]
- References : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [2]
- References : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [3]
- References : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [4]
- References : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [5]
- Acknowledgements : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- Author information : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [1]
- Author information : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [2]
- Ethics declarations : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- Rights and permissions : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- About this article : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- Table 1 One-way ANOVA variance and Tukey’s post hoc test values of removal torque (N cm), removal energy [N cm/rad (0.01 J)], and connection stiffness [N cm/rad] for SAE-HD and SAE implants at 2 and 4 weeks postoperatively (n = 6; P < 0.05) : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- Table 2 Spearman rank correlation coefficient values between removal torque (N cm), removal energy [N cm/rad (0.01 J)], and connection stiffness [N cm/rad] for SAE-HD and SAE implants at 2 and 4 weeks postoperatively (n = 6; P < 0.01) : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- Fig. 1. Two pairs of implants (10 mm × 4 mm, L × Ø) from each of the experimental groups were placed in each tibia with an alternating fashion in terms of medio-distal positioning regarding the group, but with the first group chosen at random. Implants were placed with an inter-implant distance of 1 cm : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant
- Fig. 2. Adaptation of Shimadzu universal testing machine for performing removal torque test of dental implants. a General view. b Assembly detail of connection between Allen keys socket and the implant placed in the tibia : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant
- Fig. 3. Representative curve of the torque test for implants. a Graph of torque versus angular displacement with linear regression curve, and equation, representing the connection stiffness. b Determination procedure of unscrewing implant work up to test’s maximum torque : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant
- Fig. 4. Comparison among secant and tangent methods to calculate the connection stiffness values, which reveals the absence of mathematical discrepancy : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant
- Fig. 5. Mean and standard deviation of the biomechanical data at both observation periods (P > 0.05). a Removal torque. b Removal energy. c Connection stiffness : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant
- Abstract : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- Background : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [1]
- Background : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [2]
- Methods : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [1]
- Methods : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [2]
- Results : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [1]
- Results : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [2]
- Discussion : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [1]
- Discussion : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [2]
- Discussion : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [3]
- Conclusions : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- Abbreviations : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- References : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [1]
- References : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [2]
- References : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [3]
- References : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [4]
- References : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [5]
- Acknowledgements : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- Author information : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [1]
- Author information : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [2]
- Ethics declarations : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- Rights and permissions : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- About this article : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- Table 1 Characteristics of participants and examining sites : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- Fig. 1. Comparison of calprotectin levels in PICF. PICF samples were collected from peri-implant disease sites (n = 40, diseased) and non-diseased sites (n = 34, healthy). Calprotectin amounts (a) were measured by ELISA, and its concentration (b) was normalized by the volume of PICF. Horizontal bars show the mean values of each group. *P < 0.01 : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant
- Fig. 2. Comparison of NTx levels in PICF. NTx amounts (a) in PICF samples from peri-implant disease sites (n = 40, diseased) and non-diseased sites (n = 34, healthy) were measured by ELISA, and its concentration (b) was normalized by the volume of PICF. Horizontal bars show the mean values of each group. ‡P < 0.05, *P < 0.01 : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant
- Fig. 3. Relationship between PICF calprotectin amounts and PD or GI scores. a The relationship between PICF calprotectin amounts and PD was evaluated in PICF samples from peri-implant disease and healthy groups (n = 74, ρ = 0.709, P < 0.001). b Relationship between PICF calprotectin amounts and GI scores. Calprotectin amounts in PICF samples from sites with GI-0 (n = 34), GI-1 (n = 20), and GI-2 (n = 20) were statistically analyzed. Horizontal bars show the median of each group. †P < 0.001 : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant
- Fig. 4. Correlation between NTx amounts and PD or BL rates. a The correlation between PICF NTx amounts and PD was evaluated in PICF samples from peri-implant disease and healthy groups (n = 74, ρ = 0.434, P < 0.001). b The correlation between PICF NTx amounts and BL rates (%) was evaluated in PICF samples from peri-implant disease and healthy groups (n = 74, ρ = 0.570, P < 0.001) : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant
- Fig. 5. ROC analyses of PICF calprotectin and NTx to predict peri-implant diseases. PICF samples were collected from sites with and without peri-implant diseases (n = 74). Calprotectin (a) and NTx (b) amounts in PICF samples were subjected to ROC curve analysis. AUC values for calprotectin and NTx amounts were 0.964 (95% CI = 0.913–0.996, P < 0.001) and 0.784 (95% CI = 0.672–0.891, P < 0.001), respectively, when cutoff values were 60.4 ng/site (arrow in a) and 1.88 ng/site (arrow in b) : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant