Discussion : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [2]
On the other hand, lack of significant differences between the two groups in the present experiment could be due to the fact that the effect of hydrophilicity, in terms of accelerating bone healing and osseointegration, was unfolded before the first evaluation time-point of 2 weeks, i.e., during the very early healing period. Consistently, pre-clinical investigations show the potential of chemically modified surfaces to rapidly modulate the host-to-implant response upon prompt adsorption of blood proteins [20, 22]. In a recent study reported by Vasak et al. [39], hydrophilic implants (SLActivea) strengthened the apposition of newly formed bone at the very early healing period between 5 and 10 days in the intra-oral model of minipigs, even though they did not reveal significant statistical differences in comparison to hydrophobic surfaces (SLA). Clinically, a systematic review of human histological studies on molecular aspects of osseointegration [29] has shown that moderately rough implant surfaces with high hydrophilicity enhance molecular processes related to osseointegration during the early stages of wound healing. Similar clinical studies assessed the degree of new bone-to-implant contact (%NBIC) around SLActive implants in comparison to SLA placed in the mandibular retromolar region in man during the early stages of osseointegration [28, 40]. The authors reported a progressive increase in %NBIC around both implants, whereas chemically active surfaces disclosed higher values at 2 and 4 weeks compared with SLA, no longer observed after 6 weeks of osseointegration.
Studies including biomechanical analysis of osseointegration are usually assessing maximum removal torque. Although this parameter is important, use of a single parameter appears not sufficient for a complete biomechanical assessment of osseointegration. Herein, connection stiffness, reflecting the rigidity (i.e., the stability of the implant under load), and removal energy, reflecting the overall energy (workload) necessary to loosen the bone-to-implant connection, were additionally assessed. It is suggested that the use of these three parameters in a complementary manner is essential for complete evaluation of the biomechanical properties of implants. Indeed, two different osseointegrated implants can have the same maximum removal torque, but distinct connection stiffness; similarly, they may show the same removal energy but perform in a very distinct fashion and show distinct connection stiffness and maximum removal torque. To the best of the authors’ knowledge, this is the first original research reporting removal energy as an intrinsic removal torque property in relation to connection stiffness during biomechanical assessment of hydrophilic implants; however, removal energy has already been used assessing mini-implants with hydrophobic surfaces [41].
Serial posts:
- Abstract : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [1]
- Abstract : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [2]
- Background : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [1]
- Background : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [2]
- Methods : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [1]
- Methods : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [2]
- Methods : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [3]
- Results : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- Discussion : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [1]
- Discussion : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [2]
- Discussion : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [3]
- Conclusions : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- Notes : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- References : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [1]
- References : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [2]
- References : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [3]
- References : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [4]
- References : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [5]
- Acknowledgements : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- Author information : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [1]
- Author information : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [2]
- Ethics declarations : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- Rights and permissions : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- About this article : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- Table 1 One-way ANOVA variance and Tukey’s post hoc test values of removal torque (N cm), removal energy [N cm/rad (0.01 J)], and connection stiffness [N cm/rad] for SAE-HD and SAE implants at 2 and 4 weeks postoperatively (n = 6; P < 0.05) : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- Table 2 Spearman rank correlation coefficient values between removal torque (N cm), removal energy [N cm/rad (0.01 J)], and connection stiffness [N cm/rad] for SAE-HD and SAE implants at 2 and 4 weeks postoperatively (n = 6; P < 0.01) : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- Fig. 1. Two pairs of implants (10 mm × 4 mm, L × Ø) from each of the experimental groups were placed in each tibia with an alternating fashion in terms of medio-distal positioning regarding the group, but with the first group chosen at random. Implants were placed with an inter-implant distance of 1 cm : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant
- Fig. 2. Adaptation of Shimadzu universal testing machine for performing removal torque test of dental implants. a General view. b Assembly detail of connection between Allen keys socket and the implant placed in the tibia : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant
- Fig. 3. Representative curve of the torque test for implants. a Graph of torque versus angular displacement with linear regression curve, and equation, representing the connection stiffness. b Determination procedure of unscrewing implant work up to test’s maximum torque : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant
- Fig. 4. Comparison among secant and tangent methods to calculate the connection stiffness values, which reveals the absence of mathematical discrepancy : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant
- Fig. 5. Mean and standard deviation of the biomechanical data at both observation periods (P > 0.05). a Removal torque. b Removal energy. c Connection stiffness : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant
- Abstract : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- Background : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [1]
- Background : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [2]
- Methods : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [1]
- Methods : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [2]
- Results : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [1]
- Results : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [2]
- Discussion : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [1]
- Discussion : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [2]
- Discussion : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [3]
- Conclusions : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- Abbreviations : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- References : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [1]
- References : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [2]
- References : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [3]
- References : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [4]
- References : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [5]
- Acknowledgements : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- Author information : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [1]
- Author information : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [2]
- Ethics declarations : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- Rights and permissions : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- About this article : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- Table 1 Characteristics of participants and examining sites : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- Fig. 1. Comparison of calprotectin levels in PICF. PICF samples were collected from peri-implant disease sites (n = 40, diseased) and non-diseased sites (n = 34, healthy). Calprotectin amounts (a) were measured by ELISA, and its concentration (b) was normalized by the volume of PICF. Horizontal bars show the mean values of each group. *P < 0.01 : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant
- Fig. 2. Comparison of NTx levels in PICF. NTx amounts (a) in PICF samples from peri-implant disease sites (n = 40, diseased) and non-diseased sites (n = 34, healthy) were measured by ELISA, and its concentration (b) was normalized by the volume of PICF. Horizontal bars show the mean values of each group. ‡P < 0.05, *P < 0.01 : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant
- Fig. 3. Relationship between PICF calprotectin amounts and PD or GI scores. a The relationship between PICF calprotectin amounts and PD was evaluated in PICF samples from peri-implant disease and healthy groups (n = 74, ρ = 0.709, P < 0.001). b Relationship between PICF calprotectin amounts and GI scores. Calprotectin amounts in PICF samples from sites with GI-0 (n = 34), GI-1 (n = 20), and GI-2 (n = 20) were statistically analyzed. Horizontal bars show the median of each group. †P < 0.001 : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant
- Fig. 4. Correlation between NTx amounts and PD or BL rates. a The correlation between PICF NTx amounts and PD was evaluated in PICF samples from peri-implant disease and healthy groups (n = 74, ρ = 0.434, P < 0.001). b The correlation between PICF NTx amounts and BL rates (%) was evaluated in PICF samples from peri-implant disease and healthy groups (n = 74, ρ = 0.570, P < 0.001) : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant
- Fig. 5. ROC analyses of PICF calprotectin and NTx to predict peri-implant diseases. PICF samples were collected from sites with and without peri-implant diseases (n = 74). Calprotectin (a) and NTx (b) amounts in PICF samples were subjected to ROC curve analysis. AUC values for calprotectin and NTx amounts were 0.964 (95% CI = 0.913–0.996, P < 0.001) and 0.784 (95% CI = 0.672–0.891, P < 0.001), respectively, when cutoff values were 60.4 ng/site (arrow in a) and 1.88 ng/site (arrow in b) : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant