References : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [3]
Boyan BD, Cheng A, Olivares-Navarrete R, Schwartz Z. Implant surface design regulates mesenchymal stem cell differentiation and maturation. Adv Dent Res. 2016;28(1):10–7. https://doi.org/10.1177/0022034515624444.
Mamalis AA, Silvestros SS. Analysis of osteoblastic gene expression in the early human mesenchymal cell response to a chemically modified implant surface: an in vitro study. Clin Oral Implants Res. 2011;22(5):530–7. https://doi.org/10.1111/j.1600-0501.2010.02049.
Kato RB, Roy B, De Oliveira FS, Ferraz EP, De Oliveira PT, Kemper AG, et al. Nanotopography directs mesenchymal stem cells to osteoblast lineage through regulation of microRNA-SMAD-BMP-2 circuit. J Cell Physiol. 2014;229(11):1690–6. https://doi.org/10.1002/jcp.24614.
Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran DL, et al. High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A. 2005;74((1):49–58. https://doi.org/10.1002/jbm.a.30320.
Bang SM, Moon HJ, Kwon YD, Yoo JY, Pae A, Kwon IK. Osteoblastic and osteoclastic differentiation on SLA and hydrophilic modified SLA titanium surfaces. Clin Oral Implants Res. 2014;25(7):831–7. https://doi.org/10.1111/clr.12146.
Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, et al. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res. 2004;83(7):529–33. https://doi.org/10.1177/154405910408300704.
Gottlow J, Barkarmo S, Sennerby L. An experimental comparison of two different clinically used implant designs and surfaces. Clin Implant Dent Relat Res. 2012;14(Suppl 1):204–12. https://doi.org/10.1111/j.1708-8208.2012.00439.
Sartoretto SC, Alves AT, Resende RF, Calasans-Maia J, Granjeiro JM, Calasans-Maia MD. Early osseointegration driven by the surface chemistry and wettability of dental implants. J Appl Oral Sci. 2015;23(3):279–87. https://doi.org/10.1590/1678-775720140483.
Lang NP, Salvi GE, Huynh-Ba G, Ivanovski S, Donos N, Bosshardt DD. Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Implants Res. 2011;22(4):349–56. https://doi.org/10.1111/j.1600-0501.2011.02172.
Shanbhag S, Shanbhag V, Stavropoulos A. Genomic analyses of early peri-implant bone healing in humans: a systematic review. Int J Implant Dent. 2015;1(1):5. https://doi.org/10.1186/s40729-015-0006-2.
Guler AU, Sumer M, Duran I, Sandikci EO, Telcioglu NT. Resonance frequency analysis of 208 Straumann dental implants during the healing period. J Oral Implantol. 2013;39(2):161–7. https://doi.org/10.1563/AAID-JOI-D-11-00060.
Serial posts:
- Abstract : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [1]
- Abstract : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [2]
- Background : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [1]
- Background : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [2]
- Methods : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [1]
- Methods : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [2]
- Methods : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [3]
- Results : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- Discussion : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [1]
- Discussion : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [2]
- Discussion : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [3]
- Conclusions : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- Notes : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- References : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [1]
- References : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [2]
- References : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [3]
- References : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [4]
- References : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [5]
- Acknowledgements : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- Author information : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [1]
- Author information : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [2]
- Ethics declarations : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- Rights and permissions : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- About this article : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- Table 1 One-way ANOVA variance and Tukey’s post hoc test values of removal torque (N cm), removal energy [N cm/rad (0.01 J)], and connection stiffness [N cm/rad] for SAE-HD and SAE implants at 2 and 4 weeks postoperatively (n = 6; P < 0.05) : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- Table 2 Spearman rank correlation coefficient values between removal torque (N cm), removal energy [N cm/rad (0.01 J)], and connection stiffness [N cm/rad] for SAE-HD and SAE implants at 2 and 4 weeks postoperatively (n = 6; P < 0.01) : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- Fig. 1. Two pairs of implants (10 mm × 4 mm, L × Ø) from each of the experimental groups were placed in each tibia with an alternating fashion in terms of medio-distal positioning regarding the group, but with the first group chosen at random. Implants were placed with an inter-implant distance of 1 cm : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant
- Fig. 2. Adaptation of Shimadzu universal testing machine for performing removal torque test of dental implants. a General view. b Assembly detail of connection between Allen keys socket and the implant placed in the tibia : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant
- Fig. 3. Representative curve of the torque test for implants. a Graph of torque versus angular displacement with linear regression curve, and equation, representing the connection stiffness. b Determination procedure of unscrewing implant work up to test’s maximum torque : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant
- Fig. 4. Comparison among secant and tangent methods to calculate the connection stiffness values, which reveals the absence of mathematical discrepancy : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant
- Fig. 5. Mean and standard deviation of the biomechanical data at both observation periods (P > 0.05). a Removal torque. b Removal energy. c Connection stiffness : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant
- Abstract : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- Background : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [1]
- Background : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [2]
- Methods : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [1]
- Methods : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [2]
- Results : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [1]
- Results : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [2]
- Discussion : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [1]
- Discussion : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [2]
- Discussion : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [3]
- Conclusions : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- Abbreviations : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- References : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [1]
- References : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [2]
- References : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [3]
- References : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [4]
- References : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [5]
- Acknowledgements : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- Author information : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [1]
- Author information : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [2]
- Ethics declarations : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- Rights and permissions : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- About this article : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- Table 1 Characteristics of participants and examining sites : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- Fig. 1. Comparison of calprotectin levels in PICF. PICF samples were collected from peri-implant disease sites (n = 40, diseased) and non-diseased sites (n = 34, healthy). Calprotectin amounts (a) were measured by ELISA, and its concentration (b) was normalized by the volume of PICF. Horizontal bars show the mean values of each group. *P < 0.01 : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant
- Fig. 2. Comparison of NTx levels in PICF. NTx amounts (a) in PICF samples from peri-implant disease sites (n = 40, diseased) and non-diseased sites (n = 34, healthy) were measured by ELISA, and its concentration (b) was normalized by the volume of PICF. Horizontal bars show the mean values of each group. ‡P < 0.05, *P < 0.01 : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant
- Fig. 3. Relationship between PICF calprotectin amounts and PD or GI scores. a The relationship between PICF calprotectin amounts and PD was evaluated in PICF samples from peri-implant disease and healthy groups (n = 74, ρ = 0.709, P < 0.001). b Relationship between PICF calprotectin amounts and GI scores. Calprotectin amounts in PICF samples from sites with GI-0 (n = 34), GI-1 (n = 20), and GI-2 (n = 20) were statistically analyzed. Horizontal bars show the median of each group. †P < 0.001 : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant
- Fig. 4. Correlation between NTx amounts and PD or BL rates. a The correlation between PICF NTx amounts and PD was evaluated in PICF samples from peri-implant disease and healthy groups (n = 74, ρ = 0.434, P < 0.001). b The correlation between PICF NTx amounts and BL rates (%) was evaluated in PICF samples from peri-implant disease and healthy groups (n = 74, ρ = 0.570, P < 0.001) : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant
- Fig. 5. ROC analyses of PICF calprotectin and NTx to predict peri-implant diseases. PICF samples were collected from sites with and without peri-implant diseases (n = 74). Calprotectin (a) and NTx (b) amounts in PICF samples were subjected to ROC curve analysis. AUC values for calprotectin and NTx amounts were 0.964 (95% CI = 0.913–0.996, P < 0.001) and 0.784 (95% CI = 0.672–0.891, P < 0.001), respectively, when cutoff values were 60.4 ng/site (arrow in a) and 1.88 ng/site (arrow in b) : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant