Discussion : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [1]
Improving surface wettability aims to increase the implant surface area achieving most favorable protein adsorption and cellular adhesion and thereby to positively regulate the biological response at the initial osseointegration process. Thus, the superior potential of superhydrophilic surfaces in enhancing osseointegration at early stages of bone formation may also enhance their load-bearing capacity and biomechanical resistance.
In the present study, both SAE-HD implants and SAE implants showed relatively high amounts of maximum removal torque values at both observation times. In contrast, the SAE-HD implants showed relatively high values in removal energy compared with SAE implants at both 2 and 4 weeks. Specifically, the test group presented consistently higher values (about 100% higher) in removal energy compared with the control group at both observation times. Further, SAE-HD implants showed high values in connection stiffness already after 2 weeks of healing, while SAE implants required 4 weeks of healing to reach a similar level. Thus, despite the fact that the differences between the two groups were not significant for any of the evaluated parameters or observation times, the results seem to indicate that differences in surface properties between SAE-HD and SAE implants, somehow influenced osseointegration and intrinsic properties of shear strength. Indeed, greater removal torque values and interfacial stiffness for hydrophilic implants (modSLA)1 between 2 and 4 weeks, in comparison with SLA2, have been previously reported [35]. In this study [35], performed in the anterior maxilla of miniature pigs, hydrophilic implants revealed, on average, 8–21 and 9–14% significantly higher removal torque and interfacial stiffness values, respectively, than those of the SLA implants. Due to the remodeling process, the biomechanical parameters decreased with time for both implant surfaces, reflecting the developing biological stability.
It has been previously reported the existence of a correlation between removal torque and %BIC values [26], although the nature of these parameters differs from one another (three-dimensional versus most often two-dimensional parameter) [36]. Indeed, the lack of differences between the groups herein reflect well the results of the histomorphometric analysis of the other half of implants in the present study, reported elsewhere [31]. In particular, similar amounts of osseointegration in terms of %BIC and bone density were observed in both groups (SAE-HD vs. SAE) at each observation time, and there were no statistically significant differences regarding the respective parameters between the two observations times [31]. In contrast, Sartoretto et al. [27] demonstrated that Acqua® implants (Neodent®), which present similar technology as the SAE-HD implants, resulted in accelerated osseointegration when placed in tibia of rabbits after 2 weeks of healing, compared with implants with the Neoporos® surface, which in turn presents similar technology with the SAE surface. The difference between the study of de Jesus et al. [31] and Sartoretto et al. [27] in terms of the impact of surface technology on histomorphometric osseointegration parameters may be due to anatomical and/or biological differences in the experimental models employed. In this context, although there is no scientific support regarding the optimal experimental model to evaluate aspects of osseointegration, the dog is one of the most commonly used animal platforms [36]. The mandible of dogs is the most frequent location; however, a high percentage of studies on implant integration have used extra-oral implant sites, including the tibia [37]. It is suggested that due to its anatomy, with a large lumen and relatively low trabecular density [38], it possesses high discriminating potential regarding the impact of implant surface technologies to enhance osseointegration. Furthermore, the tibia allows placement of a larger number of implants comparing with the mandible, thus allowing the use of fewer animals and/or multiple types of comparisons/tests (e.g., biomechanical and histological evaluation).
Serial posts:
- Abstract : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [1]
- Abstract : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [2]
- Background : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [1]
- Background : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [2]
- Methods : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [1]
- Methods : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [2]
- Methods : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [3]
- Results : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- Discussion : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [1]
- Discussion : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [2]
- Discussion : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [3]
- Conclusions : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- Notes : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- References : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [1]
- References : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [2]
- References : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [3]
- References : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [4]
- References : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [5]
- Acknowledgements : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- Author information : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [1]
- Author information : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles [2]
- Ethics declarations : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- Rights and permissions : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- About this article : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- Table 1 One-way ANOVA variance and Tukey’s post hoc test values of removal torque (N cm), removal energy [N cm/rad (0.01 J)], and connection stiffness [N cm/rad] for SAE-HD and SAE implants at 2 and 4 weeks postoperatively (n = 6; P < 0.05) : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- Table 2 Spearman rank correlation coefficient values between removal torque (N cm), removal energy [N cm/rad (0.01 J)], and connection stiffness [N cm/rad] for SAE-HD and SAE implants at 2 and 4 weeks postoperatively (n = 6; P < 0.01) : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant surface: an experimental study in Beagles
- Fig. 1. Two pairs of implants (10 mm × 4 mm, L × Ø) from each of the experimental groups were placed in each tibia with an alternating fashion in terms of medio-distal positioning regarding the group, but with the first group chosen at random. Implants were placed with an inter-implant distance of 1 cm : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant
- Fig. 2. Adaptation of Shimadzu universal testing machine for performing removal torque test of dental implants. a General view. b Assembly detail of connection between Allen keys socket and the implant placed in the tibia : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant
- Fig. 3. Representative curve of the torque test for implants. a Graph of torque versus angular displacement with linear regression curve, and equation, representing the connection stiffness. b Determination procedure of unscrewing implant work up to test’s maximum torque : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant
- Fig. 4. Comparison among secant and tangent methods to calculate the connection stiffness values, which reveals the absence of mathematical discrepancy : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant
- Fig. 5. Mean and standard deviation of the biomechanical data at both observation periods (P > 0.05). a Removal torque. b Removal energy. c Connection stiffness : Interfacial biomechanical properties of a dual acid-etched versus a chemically modified hydrophilic dual acid-etched implant
- Abstract : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- Background : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [1]
- Background : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [2]
- Methods : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [1]
- Methods : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [2]
- Results : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [1]
- Results : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [2]
- Discussion : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [1]
- Discussion : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [2]
- Discussion : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [3]
- Conclusions : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- Abbreviations : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- References : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [1]
- References : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [2]
- References : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [3]
- References : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [4]
- References : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [5]
- Acknowledgements : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- Author information : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [1]
- Author information : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study [2]
- Ethics declarations : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- Rights and permissions : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- About this article : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- Table 1 Characteristics of participants and examining sites : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: a pilot study
- Fig. 1. Comparison of calprotectin levels in PICF. PICF samples were collected from peri-implant disease sites (n = 40, diseased) and non-diseased sites (n = 34, healthy). Calprotectin amounts (a) were measured by ELISA, and its concentration (b) was normalized by the volume of PICF. Horizontal bars show the mean values of each group. *P < 0.01 : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant
- Fig. 2. Comparison of NTx levels in PICF. NTx amounts (a) in PICF samples from peri-implant disease sites (n = 40, diseased) and non-diseased sites (n = 34, healthy) were measured by ELISA, and its concentration (b) was normalized by the volume of PICF. Horizontal bars show the mean values of each group. ‡P < 0.05, *P < 0.01 : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant
- Fig. 3. Relationship between PICF calprotectin amounts and PD or GI scores. a The relationship between PICF calprotectin amounts and PD was evaluated in PICF samples from peri-implant disease and healthy groups (n = 74, ρ = 0.709, P < 0.001). b Relationship between PICF calprotectin amounts and GI scores. Calprotectin amounts in PICF samples from sites with GI-0 (n = 34), GI-1 (n = 20), and GI-2 (n = 20) were statistically analyzed. Horizontal bars show the median of each group. †P < 0.001 : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant
- Fig. 4. Correlation between NTx amounts and PD or BL rates. a The correlation between PICF NTx amounts and PD was evaluated in PICF samples from peri-implant disease and healthy groups (n = 74, ρ = 0.434, P < 0.001). b The correlation between PICF NTx amounts and BL rates (%) was evaluated in PICF samples from peri-implant disease and healthy groups (n = 74, ρ = 0.570, P < 0.001) : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant
- Fig. 5. ROC analyses of PICF calprotectin and NTx to predict peri-implant diseases. PICF samples were collected from sites with and without peri-implant diseases (n = 74). Calprotectin (a) and NTx (b) amounts in PICF samples were subjected to ROC curve analysis. AUC values for calprotectin and NTx amounts were 0.964 (95% CI = 0.913–0.996, P < 0.001) and 0.784 (95% CI = 0.672–0.891, P < 0.001), respectively, when cutoff values were 60.4 ng/site (arrow in a) and 1.88 ng/site (arrow in b) : Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant