Open hour: senin - sabtu 09:00:00 - 20:00:00; minggu & tanggal merah tutup
Discussion : Maxillary sinus augmentation using chairside bone marrow aspirate concentrates for implant site development: a systematic review of histomorphometric studies [1]

Discussion : Maxillary sinus augmentation using chairside bone marrow aspirate concentrates for implant site development: a systematic review of histomorphometric studies [1]

author: Miriam Ting, Philip Afshar, Arik Adhami, Stanton M Braid, Jon B Suzuki | publisher: drg. Andreas Tjandra, Sp. Perio, FISID

Mesenchymal stem cells (MSCs) in BMAC have the potential to renew, experience clonal expansion, and differentiate into musculoskeletal tissues [16]. MSCs are also known to have an immunoregulatory role and may enhance the normal healing response and angiogenesis [10]. BMAC has been used in bone, cartilage, and tendon injuries with encouraging results [16]. BMAC is a minimally invasive procedure, avoiding the risks of an open bone graft procedure, but still requires the same care and consideration for asepsis.

The published clinical and histomorphometric studies [2, 7, 11, 12, 14, 15] were generally seeking the same clinical outcome: implants surgically placed in bone regenerated by selected tissue engineering approaches. Generally, BMAC derived by the iliac crest or tibia is mixed with bovine bone (test group) and compared with bovine bone alone (control group) after placement into the maxillary sinus.

Sauerbier et al. [12] compared preparation techniques for mesenchymal stem cells. BMAC + bovine bone was compared with FICOLL–Hypaque centrifugation preparation of BMAC after placement into maxillary sinuses. New bone (19.9%) from the test group and new bone from the control group (15.5%) were not statistically significant. FICOLL preparation in this study included centrifugation of BMAC at 2400 rpm for 25 min. Cell preparations were rinsed 2× in phosphate-buffered saline (PBS). Trypan blue dye exclusion of small aliquots of the final product were evaluated microscopically, but percentage of viable cells was not presented. This study indicated that BMAC + bovine bone grafts were equal to BMAC FICOLL preparation, despite the 50-min laboratory time taken to purify cells. Histologic diagnosis of this paper was highly sophisticated and used bar graphs with standard deviation (SD) to illustrate differences between groups. New bone was stained by Azar II–Pararosanilin and new bone formation assessed in both native bone and bovine bone samples. Confidence limits (Cl) of greater than 90% were reported for the differences in new bone with BMAC vs FICOLL preparations. Since FICOLL cell preparation was the standard method to purify bone regeneration cells before chairside BMAC was developed, it was important to recognize the effectiveness of chairside BMAC compared to the existing standards of FICOLL cell preparation.

Serial posts:


id post:
New thoughts
Me:
search
glossary
en in