Fig. 7. ing a trephine bur. a Overview image of coronal-apical cut through the entire core biopsy showing formation of new bone (NB) next to old bone of the extraction socket (B). easy-graft CRYSTAL particles (Gr) are embedded in well perfused connective tissue (CT) and new bone (NB) (Azur II and Pararosanilin, original magnification ×50). b Integration of easy-graft CRYSTAL particle (Gr) into ...
Fig. 6. ntegration and preservation of ridge without collapse of the buccal or lingual cortical plates also showing the cross sections in the grafted area
Fig. 6. a–c Four-month postoperative CBCT showing graft integration and preservation of ridge without collapse of the buccal or lingual cortical plates also showing the cross sections in the grafted area
Fig. 5. CBCT images of the extraction site. a Preoperative CBCT showing fractured and un-restorable teeth #45 and #46 planned to be extracted. b–d Cross sectional views
Fig. 5. CBCT images of the extraction site. a Preoperative CBCT showing fractured and un-restorable teeth #45 and #46 planned to be extracted. b–d Cross sectional views
Fig. 4. excellent width of keratinized tissue which was also preserved. b Implant crowns placed and loaded after 3 months of placement
Fig. 4. a Second stage surgery followed by impression making. Note the excellent width of keratinized tissue which was also preserved. b Implant crowns placed and loaded after 3 months of placement
Fig. 3. Postoperative X ray showing the implant positions in the mandible where the teeth were extracted and ridge preservation was accomplished
Fig. 3. Postoperative X ray showing the implant positions in the mandible where the teeth were extracted and ridge preservation was accomplished
Fig. 2. ssue approximation. A good width of keratinized tissue is visible along with ridge preservation. Ready for implant placement in the grafted areas. b Implant placed in 45 area. Core biopsy sample taken from area 46. Note the integration of graft particles in the preserved alveolar ridge also inside the osteotomy site of 46. c Two Xive (Dentsply) implants placed in the preserved ridge. d. ...
Fig. 1. ft tissue and no flap reflection on the surgical site. c Graft material condensed into the extraction sockets showing good initial graft stability. d Black silk sutures placed with tissue approximation and no releasing incision in the flaps
Fig. 1. a Clinical occlusal view with fractured 45 and 46. b Post-extraction view of the socket. Note minimal trauma to the soft tissue and no fla...
Patient no.
Gender
Patient’s age
Tooth no.
Time post extraction [month]
% New bone
...
Patient no.
Tooth no.
Ridge width baseline [mm]
Ridge width implant placement [mm]
Ridge width changes [mm]
...
ISQ level at implant placement
ISQ level at loading
Patient no.
Tooth no.
Buccal
Palatal
...
Kakar, A., Rao, B.H.S., Hegde, S. et al. Ridge preservation using an in situ hardening biphasic calcium phosphate (β-TCP/HA) bone graft substitute—a clinical, radiological, and histological study.
Int J Implant Dent 3, 25 (2017). https://doi.org/10.1186/s40729-017-0086-2
Download citation
Received: 31 December 2016
Accepted: 25 May 2017
Published: 22 June 2017
DOI: htt...
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were...
Correspondence to
Ashish Kakar.
Yenepoya University Dental College, University Road, Mangalore, 575018, India
Ashish Kakar, Bappanadu H. Sripathi Rao & Shashikanth Hegde
Dental Foundations and Research Centre, Malad, Mumbai, 400064, India
Nikhil Deshpande
Department of Oral and Maxillofacial Surgery, Center for Dental Medicine, Medical Center—University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
Annette ...
We acknowledge Sunstar Suisse SA, Etoy, Switzerland, for partly supporting this clinical study with a study grant. The authors declare that there is no conflict of interest regarding the publication of this paper.
Ashish Kakar, Bappanadu H. Sripathi Rao, Shashikanth Hegde, Nikhil Deshpande, Annette Lindner, Heiner Nagursky, Aditya Patney, and Harsh Mahajan declare that they have no competing inte...
Lang NP, Pun L, Lau KY, Li KY, Wong MC. A systematic review on survival and success rates of implants placed immediately into fresh extraction sockets after at least 1 year. Clin Oral Implants Res. 2012;23 Suppl 5:39–66.
Smukler H, Landi L, Setayesh R. Hostomorphometric evaluation of extraction sockets and deficient alveolar ridges treated with allografts and barrier membrane. A pilot study. In...
Nair PNR, Luder H-U, Maspero FA, Fischer JH, Schug J. Biocompatibility of beta-tricalcium phosphateroot replicas in porcine tooth extraction sockets—a correlativehistological, ultrastructural, and x-ray microanalytical pilotstudy. J Biomater Appl. 2006;20(4):307–24.
Jensen SS, Terheyden H. Bone augmentation procedures in localized defects in the alveolar ridge: clinical results with different...
Araujo MG, Sukekava F, Wennstrom J, Lindhe J. Ridge alterations following implant placement in fresh extraction sockets: an experimental study in the dog. J Clin Periodontol. 2005;32:645–52.
Van der Weijden F, Dell'Acqua F, Slot DE DE. Alveolar bone dimensional changes of post-extraction sockets in humans: a systematic review. J Clin Periodontol. 2009;36(12):1048–58.
Schropp L, Wenzel A, Kos...
The results of this clinical study support the use of a biphasic in situ hardening alloplastic bone graft substitute for ridge preservation in intact post-extraction sites without the use of a dental membrane. Therefore, grafting of sockets without primary wound closure or using dental membranes or a soft tissue punch can be an effective minimally invasive method of preserving the contour and arch...
Likewise, the reported amount of residual grafting material in the defect site was similar. In average, only 26.2 ± 9.4% of the defect was occupied with residual graft material in this study which is well in line with 26.6 ± 5.2% reported for BCP but below the 37.7 ± 8.5% reported for xenograft [14].
All 15 implants could be placed without the need for additional bone augmentation....
As previously reported, secondary intention soft tissue healing of grafted post-extraction sites can be well achieved when using an in situ hardening and in situ stabilizing bone graft substitutes without the need of a dental membrane [18, 20]. Findings of the present report corroborate these results. The authors found that all sites healed uneventfully with coverage of soft tissue and no local co...
Ridge preservation following dental extractions is fundamental, preserving the ridge profile for subsequent implant placement and providing a sustained function and esthetics. This clinical trial reports on the successful application of an in situ hardening biphasic alloplastic bone graft substitute for ridge preservation and subsequent implant placement in 15 healthy patients. A routine but minim...
Cone beam computer tomography (CBCT) was performed before tooth extraction and at the time point of implant placement. Mean ridge width reduction before tooth extraction to implant placement was calculated to effect in 0.79 ± 0.73 mm horizontal bone loss (Table 2). Primary implant stability was achieved in all 15 cases, showed in average high ISQ levels 70.3 ± 9.7 (buccal/palatal), and...
Fifteen patients (4 females and 11 males) with a mean age of 51.3 + 14.8 years (range: 27 to 75 years) participated in this randomized clinical trial. The site specific areas and teeth numbers for the study are shown in Table 1.
In all cases, the postoperative healing was uneventful. Clinically, the soft tissue healing pattern observed was very similar in all cases. The soft tissue on all ...
Bone biopsies were harvested using a trephine bur at the site of implant placement. The trephine burs including the bone biopsies were fixed in 4% formalin for 5–7 days, rinsed in water, and dehydrated in serial steps of ethanol (70, 80, 90, and 100%), remaining for 1 day in each concentration. Specimens were then infiltrated, embedded, and polymerized in resin (Technovit 9100, Heraeus Kulzer,...
Antibiotic therapy consisting of 1 g amoxicillin every 12 h for 4 days and mouth rinsing with 0.2% chlorhexidine every 8 h for 10 days were prescribed. The suture was removed 1 week postoperatively. After 3 to 8 months (average 5.2 ± 2 months), the sites (Fig. 2a) were reentered for implant placement. A site-specific full thickness mucoperiosteal flap was elevated to expose the regen...
This study was approved by the Yenepoya University Ethics committee, Mangalore, India (Approval Number YOEC83/8/3/2014). Fifteen patients who required extraction of a maxillary or mandibular tooth and subsequent single-tooth implant placement and who met the inclusion and exclusion criteria were included in this prospective single-arm clinical study. The patients (4 females and 11 males) had a mea...
To our knowledge, this is the first systematic clinical, radiographic, and histological evaluation that assesses bone formation and ridge width preservation after socket grafting using an in situ hardening biphasic bone graft substitute in healthy patients.
Following tooth extraction, the alveolar ridge will decrease in volume and change its morphology [1, 2]. These changes are clinically significant [3] and can complicate the placement of a conventional bridge or an implant-supported crown. Post-extraction maintenance of the alveolar ridge following the principles of ridge preservation using bone graft substitutes minimizes ridge resorption and, thu...
Post-Extraction ridge preservation using bone graft substitutes is a conservative technique to maintain the width of the alveolar ridge. The objective of the present study was to evaluate an in situ hardening biphasic (HA/β-TCP) bone graft substitutes for ridge preservation without primary wound closure or a dental membrane.
A total of 15 patients reported for tooth extraction were enrolled in t...
Fig. 7. image of coronal-apical cut through the entire core biopsy showing formation of new bone (NB) next to old bone of the extraction socket (B). easy-graft CRYSTAL particles (Gr) are embedded in well perfused connective tissue (CT) and new bone (NB) (Azur II and Pararosanilin, original magnification ×50). b Integration of easy-graft CRYSTAL particle (Gr) into newly formed bone (NB) and conn...
Fig. 6. graft integration and preservation of ridge without collapse of the buccal or lingual cortical plates also showing the cross sections in the grafted area
Fig. 6. a–c Four-month postoperative CBCT showing graft integration and preservation of ridge without collapse of the buccal or lingual cortical plates also showing the cross sections in the grafted area
Fig. 5. CBCT images of the extraction site. a Preoperative CBCT showing fractured and un-restorable teeth #45 and #46 planned to be extracted. b–d Cross sectional views
Fig. 5. CBCT images of the extraction site. a Preoperative CBCT showing fractured and un-restorable teeth #45 and #46 planned to be extracted. b–d Cross sectional views
Fig. 4. lant crowns placed and loaded after 3 months of placement
Fig. 4. a Second stage surgery followed by impression making. Note the excellent width of keratinized tissue which was also preserved. b Implant crowns placed and loaded after 3 months of placement
Fig. 3. Postoperative X ray showing the implant positions in the mandible where the teeth were extracted and ridge preservation was accomplished
Fig. 3. Postoperative X ray showing the implant positions in the mandible where the teeth were extracted and ridge preservation was accomplished
Fig. 2. ximation. A good width of keratinized tissue is visible along with ridge preservation. Ready for implant placement in the grafted areas. b Implant placed in 45 area. Core biopsy sample taken from area 46. Note the integration of graft particles in the preserved alveolar ridge also inside the osteotomy site of 46. c Two Xive (Dentsply) implants placed in the preserved ridge. d. Postoperat...
Fig. 1. traction sockets showing good initial graft stability. d Black silk sutures placed with tissue approximation and no releasing incision in the flaps
Fig. 1. a Clinical occlusal view with fractured 45 and 46. b Post-extraction view of the socket. Note minimal trauma to the soft tissue and no flap reflection on the surgical site. c Graft material condensed into the extraction sockets sho...
Patient no.
Gender
Patient’s age
Tooth no.
Time post extraction [month]
% New bone
...
Patient no.
Tooth no.
Ridge width baseline [mm]
Ridge width implant placement [mm]
Ridge width changes [mm]
...
ISQ level at implant placement
ISQ level at loading
Patient no.
Tooth no.
Buccal
Palatal
...
Kakar, A., Rao, B.H.S., Hegde, S. et al. Ridge preservation using an in situ hardening biphasic calcium phosphate (β-TCP/HA) bone graft substitute—a clinical, radiological, and histological study.
Int J Implant Dent 3, 25 (2017). https://doi.org/10.1186/s40729-017-0086-2
Download citation
Received: 31 December 2016
Accepted: 25 May 2017
Published: 22 June 2017
DOI: htt...
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were...
Correspondence to
Ashish Kakar.
Yenepoya University Dental College, University Road, Mangalore, 575018, India
Ashish Kakar, Bappanadu H. Sripathi Rao & Shashikanth Hegde
Dental Foundations and Research Centre, Malad, Mumbai, 400064, India
Nikhil Deshpande
Department of Oral and Maxillofacial Surgery, Center for Dental Medicine, Medical Center—University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
Annette ...
We acknowledge Sunstar Suisse SA, Etoy, Switzerland, for partly supporting this clinical study with a study grant. The authors declare that there is no conflict of interest regarding the publication of this paper.
Ashish Kakar, Bappanadu H. Sripathi Rao, Shashikanth Hegde, Nikhil Deshpande, Annette Lindner, Heiner Nagursky, Aditya Patney, and Harsh Mahajan declare that they have no competing inte...
Lang NP, Pun L, Lau KY, Li KY, Wong MC. A systematic review on survival and success rates of implants placed immediately into fresh extraction sockets after at least 1 year. Clin Oral Implants Res. 2012;23 Suppl 5:39–66.
Smukler H, Landi L, Setayesh R. Hostomorphometric evaluation of extraction sockets and deficient alveolar ridges treated with allografts and barrier membrane. A pilot study. In...
Nair PNR, Luder H-U, Maspero FA, Fischer JH, Schug J. Biocompatibility of beta-tricalcium phosphateroot replicas in porcine tooth extraction sockets—a correlativehistological, ultrastructural, and x-ray microanalytical pilotstudy. J Biomater Appl. 2006;20(4):307–24.
Jensen SS, Terheyden H. Bone augmentation procedures in localized defects in the alveolar ridge: clinical results with different...
Araujo MG, Sukekava F, Wennstrom J, Lindhe J. Ridge alterations following implant placement in fresh extraction sockets: an experimental study in the dog. J Clin Periodontol. 2005;32:645–52.
Van der Weijden F, Dell'Acqua F, Slot DE DE. Alveolar bone dimensional changes of post-extraction sockets in humans: a systematic review. J Clin Periodontol. 2009;36(12):1048–58.
Schropp L, Wenzel A, Kos...
The results of this clinical study support the use of a biphasic in situ hardening alloplastic bone graft substitute for ridge preservation in intact post-extraction sites without the use of a dental membrane. Therefore, grafting of sockets without primary wound closure or using dental membranes or a soft tissue punch can be an effective minimally invasive method of preserving the contour and arch...
Likewise, the reported amount of residual grafting material in the defect site was similar. In average, only 26.2 ± 9.4% of the defect was occupied with residual graft material in this study which is well in line with 26.6 ± 5.2% reported for BCP but below the 37.7 ± 8.5% reported for xenograft [14].
All 15 implants could be placed without the need for additional bone augmentation....
As previously reported, secondary intention soft tissue healing of grafted post-extraction sites can be well achieved when using an in situ hardening and in situ stabilizing bone graft substitutes without the need of a dental membrane [18, 20]. Findings of the present report corroborate these results. The authors found that all sites healed uneventfully with coverage of soft tissue and no local co...
Ridge preservation following dental extractions is fundamental, preserving the ridge profile for subsequent implant placement and providing a sustained function and esthetics. This clinical trial reports on the successful application of an in situ hardening biphasic alloplastic bone graft substitute for ridge preservation and subsequent implant placement in 15 healthy patients. A routine but minim...
Cone beam computer tomography (CBCT) was performed before tooth extraction and at the time point of implant placement. Mean ridge width reduction before tooth extraction to implant placement was calculated to effect in 0.79 ± 0.73 mm horizontal bone loss (Table 2). Primary implant stability was achieved in all 15 cases, showed in average high ISQ levels 70.3 ± 9.7 (buccal/palatal), and...
Fifteen patients (4 females and 11 males) with a mean age of 51.3 + 14.8 years (range: 27 to 75 years) participated in this randomized clinical trial. The site specific areas and teeth numbers for the study are shown in Table 1.
In all cases, the postoperative healing was uneventful. Clinically, the soft tissue healing pattern observed was very similar in all cases. The soft tissue on all ...
Bone biopsies were harvested using a trephine bur at the site of implant placement. The trephine burs including the bone biopsies were fixed in 4% formalin for 5–7 days, rinsed in water, and dehydrated in serial steps of ethanol (70, 80, 90, and 100%), remaining for 1 day in each concentration. Specimens were then infiltrated, embedded, and polymerized in resin (Technovit 9100, Heraeus Kulzer,...
Antibiotic therapy consisting of 1 g amoxicillin every 12 h for 4 days and mouth rinsing with 0.2% chlorhexidine every 8 h for 10 days were prescribed. The suture was removed 1 week postoperatively. After 3 to 8 months (average 5.2 ± 2 months), the sites (Fig. 2a) were reentered for implant placement. A site-specific full thickness mucoperiosteal flap was elevated to expose the regen...
This study was approved by the Yenepoya University Ethics committee, Mangalore, India (Approval Number YOEC83/8/3/2014). Fifteen patients who required extraction of a maxillary or mandibular tooth and subsequent single-tooth implant placement and who met the inclusion and exclusion criteria were included in this prospective single-arm clinical study. The patients (4 females and 11 males) had a mea...
To our knowledge, this is the first systematic clinical, radiographic, and histological evaluation that assesses bone formation and ridge width preservation after socket grafting using an in situ hardening biphasic bone graft substitute in healthy patients.
Following tooth extraction, the alveolar ridge will decrease in volume and change its morphology [1, 2]. These changes are clinically significant [3] and can complicate the placement of a conventional bridge or an implant-supported crown. Post-extraction maintenance of the alveolar ridge following the principles of ridge preservation using bone graft substitutes minimizes ridge resorption and, thu...
Post-Extraction ridge preservation using bone graft substitutes is a conservative technique to maintain the width of the alveolar ridge. The objective of the present study was to evaluate an in situ hardening biphasic (HA/β-TCP) bone graft substitutes for ridge preservation without primary wound closure or a dental membrane.
A total of 15 patients reported for tooth extraction were enrolled in t...
Authors
Year of study
Method of study
Results
Tos and Mogesen et al.
1979
...
Factor
Difference
95% CI
p value
Age (years)
Gender
Male
Female
Overall
N (%)
N (%)
N (%)
p value
...
Position
1 (AR/AL)
2(BR/BL)
3 (CR/CL)
Overall
N (%)
N (%)
N (%)
...
Sex
Male
Female
Overall
Mean (SD)
Mean (SD)
Mean...
Fig. 3. Demonstration of the method used to measure the angle designated by the buccal and lingual walls of the sinus angle for each of the three fixed points in a given height
Fig. 3. Demonstration of the method used to measure the angle designated by the buccal and lingual walls of the sinus angle for each of the three fixed points in a given height
Fig. 2. Demonstration of the method used to measure the thickness of the Schneiderian membrane in the cross-sectional images for each of the three fixed points
Fig. 2. Demonstration of the method used to measure the thickness of the Schneiderian membrane in the cross-sectional images for each of the three fixed points
Fig. 1. Demonstration of the method used in the panoramic image to divide the sinus in four equal parts and find three fixed points for the measurements. Also, these fixed points in the horizontal plane with and without sections
Fig. 1. Demonstration of the method used in the panoramic image to divide the sinus in four equal parts and find three fixed points for the measurements. Also, these ...
Kalyvas, D., Kapsalas, A., Paikou, S. et al. Thickness of the Schneiderian membrane and its correlation with anatomical structures and demographic parameters using CBCT tomography: a retrospective study.
Int J Implant Dent 4, 32 (2018). https://doi.org/10.1186/s40729-018-0143-5
Download citation
Received: 29 January 2018
Accepted: 27 August 2018
Published: 19 October 2018
...
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were m...
Patient recruitment and data collection for this study took place at National and Kapodistrian University of Athens, School of Dentistry, Greece. The research was approved by the Ethics Committee of the National and Kapodistrian University of Athens, Greece, and all activities were conducted in full accordance with ethical principles, including the World Medical Association Declaration of Helsinki...
Department of Oral and Maxillofacial Surgery, School of Dentistry, National and Kapodistrian University of Athens, Greece, Thivon 2 str, 11527, Athens, Greece
Demos Kalyvas, Andreas Kapsalas & Sofia Paikou
Oral Diagnosis & Radiology Clinic, School of Dentistry, National and Kapodistrian University of Athens, Greece, Thivon 2 str, 11527, Athens, Greece
Konstantinos Tsiklakis
You can also sea...
The data will not be shared, but are available upon request.
Wen S-C, Lin Y-H, Yang Y-C, Wang H-L. The influence of sinus membrane thickness upon membrane perforation during transcrestal sinus lift procedure. Clin. Oral Impl. Res. 2015;26:1158–64.
Insua A, Monje-Gil F, García-Caballero L, Caballé-Serrano J, Wang HL, Monje A. Mechanical characteristics of the maxillary sinus Schneiderian membrane ex vivo. Clin Oral Investig. 2017; https://doi.org/10.100...
Cagici CA, Yilmazer C, Hurcan C, Ozer C, Ozer F. Appropriate interslice gap for screening coronal paranasal sinus tomography for mucosal thickening. Eur Arch Otorhinolaryngol. 2009;266(4):519–25.
Eggesbø HB. Radiological imaging of inflammatory lesions in the nasal cavity and paranasal sinuses. Eur Radiol. 2006;16:872–88.
Lozano-Carrascal N, Salomó-Coll O, Gehrke SA, Calvo-Guirado JL, Hern...
Testori T. Maxillary sinus surgery: Anatomy and advanced diagnostic imaging. J Implant and Reconstructive Dent. 2011;2:6-14.
Sargi ZB, Casiano RR. Surgical anatomy of the paranasal sinuses. In: Kountakis SE, Onerci TM, editors. Rhinologic and sleep apnea surgical techniques. New York: Springer; 2007. p. 17–26.
Bergh van den JPA, Bruggenkate ten CM, Disch FJM, Tuinzing DB. Anatomical aspects of...
In conclusion, the present study demonstrated that male patients tend to have a thicker membrane than female patients. The angles of the sinus seemed to increase in width from mesial to distal, and they have no significant correlation with any of our parameters. Thickness of the mucosa and width of the maxillary sinus did not seem to correlate. Future studies including larger groups of participant...
In the present study, it was also concluded that the width of the sinus increases from mesial to distal. Male sinuses had higher prevalence of high angle values compared to female sinuses, but the majority of angle values and widths was characterized as moderate.
In an attempt to correlate the membrane biotype regarding thickness with the sinus width, it was proven that there is no correlation be...
Comparing the thickness of the membrane between the two genders, males seem to have thicker membranes than females. Vallo et al. 2010, Janner et al. 2011, Ji-Young Yoo et al. 2011, Cakur et al. 2013, and Jildirim et al. 2017 [9, 11, 12, 16, 17] also come to this conclusion. Our study assumed that this difference is of the order of 40%. On the contrary, Pazera et al. 2010 concluded that there is no...
It is very important to pre-operatively evaluate the thickness of the Schneiderian membrane to plan the surgical procedure in the region that involves the membrane, such as a sinus lift augmentation, which increases the possibility of membrane perforation or other complications.
The present study assumed that the average thickness of the Schneiderian membrane is 1.60 ± 1.20 mm.
There are m...
The mean value of the overall average thickness is 1.60 ± 1.20 mm (males 1.95 ± 1.28 mm and females 1.24 ± 1.02 mm) (Table 1).
The average thickness of the membrane also showed no tendency for differentiation by age group (p = 0.878) (Table 2).
The statistical analysis also shows a clear tendency towards lower values when checking from point AR to point CR and from point ...
These three cross-sectional images, in which the thickness of the Schneiderian membrane was previously measured, were also used for the measurement of the angle of the maxillary sinus. A segment DG (point D is the deepest point of the floor of the maxillary sinus) is created, vertical to the horizontal plane with stable length equal to 9.9 mm. The mean of 9.9 mm was chosen, because of a limitati...
The study sample included 76 patients, of which 39 were females and 37 were males. In total, 120 sinuses (44 both left- and right-sided, 21 right-sided, and 11 left-sided) were evaluated as suitable for the present study and were measured. The total sample was classified in four age groups (below 45 years, 45–54 years, 54–64 years, and over 65 years of age). The mean age value of the sampl...
The maxillary sinus is the largest of the paranasal air-filled spaces, and it develops firstly in utero [1, 2]. Anatomically, the maxillary sinus is a pyramid-shaped cavity located in the facial skull with a mean volume of 12.5 mL (min 5 mL and max 22 mL) [2,3,4,5,6]. The size, the shape, and the wall thickness of every maxillary sinus not only vary among the population, but also between the tw...
The aims of the present study were to determine the thickness of the Schneiderian membrane and identify the width of the maxillary sinus, which is indicated by the buccal and lingual walls of the sinus angle between. Furthermore, to investigate the possibility of a correlation between the aforementioned structures and also other anatomical and demographic parameters using CBCTs for dental implant ...
Figure 41. Decrease in ridge width
On the contrary, the width of the alveolar ridge in single-rooted teeth will be decreased approximately by 50%, and two-thirds of this reduction will occur within the first 3 months after tooth extraction.