Abstract : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
The osteoconductive properties of collagen containing xenogeneic bone blocks (CCXBB) remain unclear. The aim of this prospective single-arm clinical study was to assess the histological outcomes of CCXBB blocks used as bone replacement grafts for lateral bone augmentation procedures.
In 15 patients with severe horizontal alveolar ridge resorption, lateral augmentation procedures were performed using CCXBB as bone replacement grafts. Twenty-six weeks postoperatively, a re-entry procedure was performed to evaluate the bone width for adequate implant placement and two histological specimens were retrieved from each patient, one being processed for ground sectioning and the other for decalcified paraffin-included sections. In non-decalcified sections, the relative proportions occupied by bone, biomaterials, and connective tissue present in the biopsies were identified. In de-calcified sections, structures and cells positive for osteopontin (OPN), tartrate-resistant acid phosphatase activity (TRAP), osteocalcin (OSC), and alkaline phosphatase (ALP) were assessed.
Soft tissue dehiscence occurred during the follow-up in 5 out of 15 patients (33.3%). The mean crest width at baseline was 2.78 mm (SD 0.57) and the mean crest width at re-entry was 6.90 mm (SD 1.22), with a mean ridge width increase of 4.12 mm (SD 1.32). Twenty-six bone biopsies were obtained from 13 patients. Histomorphometric analysis showed a mean of 26.90% (SD 12.21) of mineralized vital bone (MVB), 21.37% (SD 7.36) of residual CCXBB, 47.13% (SD 19.15) of non-mineralized tissue, and 0.92% of DBBM. The immunohistochemical analysis revealed a large number of OPN-positive cells 8.12% (SD 4.73), a lower proportion of TRAP positive multinuclear cells 5.09% (SD 4.91), OSC-positive cells 4.09% (SD 4.34), and a limited amount of ALP positive cells 1.63% (SD 2).
CCXBB achieved significant horizontal crestal width allowing for staged implant placement in most of the patients. In light of the histological outcomes and implant failures, special attention must be placed to prevent soft tissue dehiscence when CCXBB is used in severe atrophic alveolar crests.
Serial posts:
- Abstract : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- Background : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- Methods : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [1]
- Methods : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [2]
- Methods : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [3]
- Methods : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [4]
- Results : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [1]
- Results : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [2]
- Discussion : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [1]
- Discussion : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [2]
- Discussion : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [3]
- Conclusions : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- Abbreviations : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- References : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [1]
- References : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [2]
- References : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [3]
- References : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [4]
- References : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [5]
- Acknowledgements : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [1]
- Acknowledgements : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [2]
- Author information : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- Rights and permissions : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- About this article : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- Table 1 Clinical and histomorphometry assessments (i.e., dehiscences, mineralized bone, CCXBB, bone marrow, connective tissue, and implant lost) : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- Table 2 Quantitative histological analysis : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- Table 3 Immunohistochemical markers proportions (i.e., TRAP, OPN, ALP, and OSC) : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- Table 4 Implant loss and tissue characteristics : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- Fig. 1. Study chart and follow-up visits : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant
- Fig. 2. Lateral bone augmentation of the alveolar crest (a) atrophic ridge. b Perforations and adaptation of the cortical layer. c Shaping, pre-wetting and fixation of CCXBB with titanium screws. d Horizontal contour and peripheral gap between CCXBB and bone layer. e Outlying DBBM filling. f CM stabilized with pins : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant
- Fig. 3. Re-entry procedure of patient in Fig. 1. a Buccal aspect of the augmented region. b Horizontal bone augmentation. c Screws and pins removal and bone trephine sampling. d Implants placement and buccal bone width from the implant shoulder. e Primary flap closure. f Implants submerged healing : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant
- Fig. 4. Histological samples. a CCXBB control without implantation. b Histologic samples with acute inflammatory infiltration. c Histologic sample with limited remaining CCXBB and large bone ingrowth : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant
- Fig. 5. Histomorphometric analysis of the same sample. a Ground section stained with Levai-Laczkó. b Tissue identification of the ROI. c Closer view aarrow pointing a cement line between new mineralized bone and CCXBB. d Closer view of b : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant
- Fig. 6 Immunohistochemical analysis of slices from the same sample with four different markers. a TRAP. b OPN. c ALP. d OSC
- Fig. 7 Second stage surgery of patient in Fig. 1. a Vestibular depth reduction after augmentation and implant placement. b Partial thickness and apical repositioned flap. c CMX healing and soft tissue dehiscence with CCXBB exposure. d Dehiscence healing after re-contouring and buccal emergency profile. e Buccal aspect of the final restoration. f Buccal ridge contour