Discussion : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [3]
The immune-histochemical results reported expression of osteopontin mainly at the border between mineralized vital bone (MVB) with CCXBB, what coincides with findings from previous reports [38,39,40]. Alkaline phosphatase (ALP) is considered as an early osteoblast differentiation marker [41]. ALP-positive cells were detectable, in all specimens on the periphery of MVB, associated to areas of new bone formation. These observations were also reported on a clinical study on guided bone regeneration (GBR) [41], as well as through the evaluation of the healing of particulate xenogeneic bone grafts (DBBM) [28]. Experimental research using immune-histochemical analysis for comparing early bone remodelling between autografts and allografts has reported comparable behavior for osteoprotegerin (OPG), alkaline phosphatase (ALP), collagen 1 (COLI), osteopontin (OPN), and osteocalcin (OSC), although an increased activity of tartrate-resistant acid phosphatase (TRAP) was seen in allogenic bone grafts [42]. In this investigation TRAP, which is a specific enzyme present in large quantities at the osteoclasts edge expressing bone resorption, was present in high proportions in all the analysed samples. On the other hand, OSC (bone matrix protein), predominantly synthesized by osteoblasts, has a fundamental role in bone formation (mineralization) and resorption [43]. Experimental studies have demonstrated the role of OSC during the early healing phases of osseointegration of dental implants [44]. In the present investigation, a statistical significant correlation between higher levels of OSC and implant loss was found. This association could be explained by a greater activity of bone modelling in these situations of deficient mineralization [45].
This prospective single-arm study has clear limitations to evaluate the efficacy of this bone regenerative intervention, since there is not a control group [46]. However, this investigation has shown excellent clinical performance and histological outcomes when CCXBB were used for lateral bone augmentation and when their integration occurred without soft tissue dehiscence.
Serial posts:
- Abstract : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- Background : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- Methods : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [1]
- Methods : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [2]
- Methods : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [3]
- Methods : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [4]
- Results : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [1]
- Results : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [2]
- Discussion : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [1]
- Discussion : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [2]
- Discussion : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [3]
- Conclusions : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- Abbreviations : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- References : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [1]
- References : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [2]
- References : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [3]
- References : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [4]
- References : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [5]
- Acknowledgements : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [1]
- Acknowledgements : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [2]
- Author information : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- Rights and permissions : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- About this article : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- Table 1 Clinical and histomorphometry assessments (i.e., dehiscences, mineralized bone, CCXBB, bone marrow, connective tissue, and implant lost) : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- Table 2 Quantitative histological analysis : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- Table 3 Immunohistochemical markers proportions (i.e., TRAP, OPN, ALP, and OSC) : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- Table 4 Implant loss and tissue characteristics : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- Fig. 1. Study chart and follow-up visits : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant
- Fig. 2. Lateral bone augmentation of the alveolar crest (a) atrophic ridge. b Perforations and adaptation of the cortical layer. c Shaping, pre-wetting and fixation of CCXBB with titanium screws. d Horizontal contour and peripheral gap between CCXBB and bone layer. e Outlying DBBM filling. f CM stabilized with pins : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant
- Fig. 3. Re-entry procedure of patient in Fig. 1. a Buccal aspect of the augmented region. b Horizontal bone augmentation. c Screws and pins removal and bone trephine sampling. d Implants placement and buccal bone width from the implant shoulder. e Primary flap closure. f Implants submerged healing : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant
- Fig. 4. Histological samples. a CCXBB control without implantation. b Histologic samples with acute inflammatory infiltration. c Histologic sample with limited remaining CCXBB and large bone ingrowth : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant
- Fig. 5. Histomorphometric analysis of the same sample. a Ground section stained with Levai-Laczkó. b Tissue identification of the ROI. c Closer view aarrow pointing a cement line between new mineralized bone and CCXBB. d Closer view of b : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant
- Fig. 6 Immunohistochemical analysis of slices from the same sample with four different markers. a TRAP. b OPN. c ALP. d OSC
- Fig. 7 Second stage surgery of patient in Fig. 1. a Vestibular depth reduction after augmentation and implant placement. b Partial thickness and apical repositioned flap. c CMX healing and soft tissue dehiscence with CCXBB exposure. d Dehiscence healing after re-contouring and buccal emergency profile. e Buccal aspect of the final restoration. f Buccal ridge contour