Open hour: senin - sabtu 09:00:00 - 20:00:00; minggu & tanggal merah tutup
Background : Relation between the stability of dental implants and two biological markers during the healing period: a prospective clinical study [2]

Background : Relation between the stability of dental implants and two biological markers during the healing period: a prospective clinical study [2]

author: Choknapa Tirachaimongkol, Peraphan Pothacharoen, Peter A Reichart, Pathawee Khongkhunthian | publisher: drg. Andreas Tjandra, Sp. Perio, FISID

Osteocalcin (OC) is the most plentiful noncollagenous protein of the bone matrix. It is secreted from odontoblasts, osteocytes, and osteoblasts, in order to bind hydroxyapatite and calcium during matrix mineralization [7]. It is one of the serological markers in the bone formation process. Numerous studies have shown increased OC levels in bone formation. However, increased OC level relates more to osteoid formation than matrix mineralization during bone formation [8–10]. Alkaline phosphatase (ALP) is a membrane-bound glycoprotein. Its function is catalyzing the hydrolysis of phosphate monoesters at a basic pH level. Bone-specific alkaline phosphatase (BALP) is known to be involved in bone calcification. It is secreted by osteoblasts to provide a high phosphate concentration at the osteoblast cell surface during bone mineralization [11].

The measurement of implant stability is based on the clinical, histological, biomechanical, and biochemical approaches. The resonance frequency analysis (RFA), a noninvasive clinical implant stability measurement, has been used in many studies. Meta-analysis of 47 studies has revealed a statistically significant correlation between RFA and insertion torque [12]. Numerous clinical studies have used the resonance frequency analysis technique on various implant designs to determine implant stability during the osseointegration period [13–20]. Evaluation of peri-implant crevicular fluid (PICF), a noninvasive, clinical, biochemical approach has been used to assess and to predict the peri-implant tissue loss [21, 22].

The purposes of this study were to examine the correlation between the stability of dental implants and bone formation markers during the healing period and to monitor the stability of dental implants during a 3-month period using the resonance frequency analysis method. The null hypothesis of the study is no correlation between the stability of dental implant and bone formation markers. Due to the three-thread-design of the implants, the authors also aim to measure the average implant stability quotient using RFA during the healing period.

Serial posts:


id post:
New thoughts
Me:
search
glossary
en in