Discussion : Effect of implant design on primary (2)
This indicates that the friction at the time of rotating and pressing is greater than that at the time of rotating and cutting the bones with a tap and is a reasonable result. In the parallel area, the torque curve was a line with a moderate gradient, and the torque rise rate obtained from the gradient of the line was 0.36 N · cm/s. From this, it is estimated that the torque increase when one revolution is added to the parallel thread is about 1.44 N · cm. The preceding thread goes forward and spreads out the bones consistently, and the following thread of the same size does not cause new torque at the time of plastic deformation, and it is therefore presumed that the torque rise in the parallel area is moderate. In the tapered area, the torque curve presented a quadratic curve steadily, the torque rise rate was 2.33 N · cm/s, and the torque increase when one revolution was added was as great as 9.32 N · cm. From this, it is supposed that an increase in the tapered thread is an effective method to increase the torque efficiently. In the tapered area, the diameters of the following threads continued to increase consistently, plastic deformation was caused in all threads in the tapered area, and a torque curve in which the torque continued to increase was produced as a result. It is supposed that the first rapid rise in the platform area was observed when the platform bottom compressed the artificial bone and that stress relaxation of the artificial bone made it more moderate subsequently. The torque rise rate by the platform was 2.65 N · cm/s, which was greater than that of the tapered area.
Removal torque curve
There have been reports on the removal torque curve of a prosthetic implant.
Serial posts:
- Effect of implant design on primary stability using torque-time curves in artificial bone
- Background : Effect of implant design on primary stability
- Methods : Effect of implant design on primary stability
- Results : Effect of implant design on primary (1)
- Results : Effect of implant design on primary (2)
- Discussion : Effect of implant design on primary (1)
- Discussion : Effect of implant design on primary (2)
- Discussion : Effect of implant design on primary (3)
- Discussion : Effect of implant design on primary (4)
- Reference : Effect of implant design on primary (4)
- Table 1 The type of the implant used for experiment
- Table 2 Insertion torque value and removal torque value
- Table 3 Torque rise rate of the each area (N · cm/s)
- Figure 1. Compressed longitudinally to one third for characteristics of implant design
- Figure 2. Torque-time curves of the ST. a Insertion torque. b Removal torque
- Figure 3. Torque-time curves of the BL. a Insertion torque. b Removal torque
- Figure 4. Torque-time curves of the TE. a Insertion torque. b Removal torque
- Figure 5. Torque-time curves of the MK3 and MK4