Figure 1. Compressed longitudinally to one third for characteristics of implant design. ST Straumann standard implant, MK3 Nobel Biocare MKIII, BL Straumann bone level implant, TE Straumann tapered effect implant, MK4 Nobel Biocare MKIV. Outer surface of implant (solid line). Inner surface of implant (dotted line)
Figure 1. Compressed longitudinally to one third for characteristics of implant design
author: Yoko Yamaguchi,Makoto Shiota,Motohiro Munakata,Shohei Kasugai, Masahiko Ozeki | publisher: drg. Andreas Tjandra, Sp. Perio, FISID
Figure 1. Compressed longitudinally to one third for characteristics of implant design. ST Straumann standard implant, MK3 Nobel Biocare MKIII, BL Straumann bone level implant, TE Straumann tapered effect implant, MK4 Nobel Biocare MKIV. Outer surface of implant (solid line). Inner surface of implant (dotted line)
Serial posts:
- Effect of implant design on primary stability using torque-time curves in artificial bone
- Background : Effect of implant design on primary stability
- Methods : Effect of implant design on primary stability
- Results : Effect of implant design on primary (1)
- Results : Effect of implant design on primary (2)
- Discussion : Effect of implant design on primary (1)
- Discussion : Effect of implant design on primary (2)
- Discussion : Effect of implant design on primary (3)
- Discussion : Effect of implant design on primary (4)
- Reference : Effect of implant design on primary (4)
- Table 1 The type of the implant used for experiment
- Table 2 Insertion torque value and removal torque value
- Table 3 Torque rise rate of the each area (N · cm/s)
- Figure 1. Compressed longitudinally to one third for characteristics of implant design
- Figure 2. Torque-time curves of the ST. a Insertion torque. b Removal torque
- Figure 3. Torque-time curves of the BL. a Insertion torque. b Removal torque
- Figure 4. Torque-time curves of the TE. a Insertion torque. b Removal torque
- Figure 5. Torque-time curves of the MK3 and MK4