Discussion : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [2]
When correlating the clinical results and the histological outcomes, there was a positive association between the presence of soft tissue dehiscence with CCXBB exposure and a diminished amount of new mineralized bone (p = 0.06). This lower amount of new bone within the xenogeneic graft suggests a lack of full graft integration and diminished vascular supply, what may have caused the soft tissues dehiscence. Similarly, the biopsies from patients who lost their implants had a statistical significant lower amount of MVB and a statistical significant larger proportion of connective tissue, what suggests that there is a direct relationship between the primary healing of the bone replacement graft, its integration with native bone and its healing to provide a biological base for dental implants to osseointegrate. These results corroborate the importance of minimal trauma during surgery, establishment of primary implant stability and avoidance of infection and micromotion during healing as key prerequisites for achieving dental implant osseointegration [29, 30]. In fact, the high incidence of early implant loss (29.2%) reported in this clinical study, is clearly higher when compared with epidemiological data from Sweden reporting early implant loss in 4.4% of patients and 1.4% of implants [31]. The delayed bone proliferative phase has also been described associated with other bone replacement grafts for bone regeneration [32] and with demineralized bovine bone mineral (DBBM) in the healing of fresh extraction sockets [33].
A high incidence of soft tissue dehiscence and implant failures has been reported in patients receiving fresh frozen allogeneic bone grafts for reconstructing severe alveolar atrophies (36.8% incidence of dehiscence and 31.5% incidence of implant loss) [34] and 21% of implant loss [35], respectively. With the use of a different equine bone block, a previous publication reported total removal of the graft in 50% of the patients and in 20% of them the implants failed [36]. The high incidence of soft tissue dehiscence occurring in this clinical study may also be explained by the extreme narrow crestal defects (mean crestal width of 2.78 mm) multiple teeth absence and non-containing defects, what needed in most of the cases to use more than one block graft. In fact, there was a positive correlation between the number of blocks used and the incidence of soft tissue dehiscences. The use of large grafts or more than one graft may have hindered an appropriate blood supply or colonization of the graft material with bone-forming cells [37].
Serial posts:
- Abstract : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- Background : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- Methods : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [1]
- Methods : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [2]
- Methods : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [3]
- Methods : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [4]
- Results : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [1]
- Results : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [2]
- Discussion : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [1]
- Discussion : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [2]
- Discussion : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [3]
- Conclusions : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- Abbreviations : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- References : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [1]
- References : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [2]
- References : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [3]
- References : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [4]
- References : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [5]
- Acknowledgements : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [1]
- Acknowledgements : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement [2]
- Author information : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- Rights and permissions : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- About this article : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- Table 1 Clinical and histomorphometry assessments (i.e., dehiscences, mineralized bone, CCXBB, bone marrow, connective tissue, and implant lost) : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- Table 2 Quantitative histological analysis : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- Table 3 Immunohistochemical markers proportions (i.e., TRAP, OPN, ALP, and OSC) : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- Table 4 Implant loss and tissue characteristics : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement
- Fig. 1. Study chart and follow-up visits : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant
- Fig. 2. Lateral bone augmentation of the alveolar crest (a) atrophic ridge. b Perforations and adaptation of the cortical layer. c Shaping, pre-wetting and fixation of CCXBB with titanium screws. d Horizontal contour and peripheral gap between CCXBB and bone layer. e Outlying DBBM filling. f CM stabilized with pins : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant
- Fig. 3. Re-entry procedure of patient in Fig. 1. a Buccal aspect of the augmented region. b Horizontal bone augmentation. c Screws and pins removal and bone trephine sampling. d Implants placement and buccal bone width from the implant shoulder. e Primary flap closure. f Implants submerged healing : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant
- Fig. 4. Histological samples. a CCXBB control without implantation. b Histologic samples with acute inflammatory infiltration. c Histologic sample with limited remaining CCXBB and large bone ingrowth : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant
- Fig. 5. Histomorphometric analysis of the same sample. a Ground section stained with Levai-Laczkó. b Tissue identification of the ROI. c Closer view aarrow pointing a cement line between new mineralized bone and CCXBB. d Closer view of b : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant
- Fig. 6. Immunohistochemical analysis of slices from the same sample with four different markers. a TRAP. b OPN. c ALP. d OSC : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant
- Fig. 7. Second stage surgery of patient in Fig. 1. a Vestibular depth reduction after augmentation and implant placement. b Partial thickness and apical repositioned flap. c CMX healing and soft tissue dehiscence with CCXBB exposure. d Dehiscence healing after re-contouring and buccal emergency profile. e Buccal aspect of the final restoration. f Buccal ridge contour : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant
- Fig. 8. Soft tissue dehiscence (a) CCXBB exposure 15 weeks after bone augmentation, the dehiscence healed 2 weeks later after reducing the graft exposure (b) after soft tissue augmentation and abutment connection leading to the loss of the mesial implant. After partial removal of the bone graft and place a connective tissue graft the area healed properly and a month later it was possible to replace the implant : Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant